
Towards a Synchronised Grammars Framework for
Adaptive Musical Human-Robot Collaboration

Miguel Sarabia*, Kyuhwa Lee† and Yiannis Demiris*

Abstract— We present an adaptive musical collaboration
framework for interaction between a human and a robot.
The aim of our work is to develop a system that receives
feedback from the user in real time and learns the music
progression style of the user over time. To tackle this problem,
we represent a song as a hierarchically structured sequence
of music primitives. By exploiting the sequential constraints
of these primitives inferred from the structural information
combined with user feedback, we show that a robot can play
music in accordance with the user’s anticipated actions. We
use Stochastic Context-Free Grammars augmented with the
knowledge of the learnt user’s preferences.

We provide synthetic experiments as well as a pilot study
with a Baxter robot and a tangible music table. The synthetic
results show the synchronisation and adaptivity features of our
framework and the pilot study suggest these are applicable to
create an effective musical collaboration experience.

I. INTRODUCTION

Everybody enjoys music. It is not surprising then that
there is intense research in the field of human-robot musical
collaboration [1], [2], [3], [4], [5], [6]. However there are
many challenges to having a robot playing music along-
side a human: there are small-scale problems like actuation
speed and accuracy, as well as large-scale issues such as
the progression of the musical pattern. There is also the
question of adaptation, how can a robot adapt to each user’s
musical taste? We focus on tackling two of these problems:
synchronisation with the musical pattern and adaptation to
the user’s musical taste.

To solve these problems we make use of Stochastic
Context-Free Grammars (SCFG). SCFGs—also known in
the literature as Probabilistic Context-Free Grammars—have
found use in fields such as natural language processing [7],
RNA analysis [8], password cracking [9], computer vi-
sion [10] and robotics [11]. The reason for their widespread
adoption lies in the intuitiveness and simplicity of their for-
mulation (which we will revise in Section III-A). SCFGs can
account for the underlying structure of musical compositions
by representing the music primitives as the base symbols of
the grammar (terminals) and the musical structure as a set
of hierarchical rules (productions).

That is the approach we follow. Using a tangible music
interface (Reactable) we designed a human-robot collab-
oration system where a user and a robot create music
together. In this set-up, the user is the conductor and is in

* Personal Robotics Lab, Department of Electrical and
Electronic Engineering, Imperial College London, United Kingdom.
B {miguel.sarabia, y.demiris}@imperial.ac.uk

† Chair in Non-invasive Brain-machine Interface Lab, École Polytech-
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charge of the melody while the robot (Baxter) produces the
drums accompaniment. Working with Baxter ensures that our
algorithms are robust enough to deal with unexpected errors
by the robot.

By using the synchronised grammars framework—which
we will present in Section III—the robot can predict the
next most likely action of the user and act accordingly.
Our framework works with probability distributions over all
musical primitives (terminals). This is essential as Baxter
draws its next action from the computed probability distribu-
tion rather than selecting the action with highest probability.
Consequently, our system may choose an unexpected action,
but we argue this adds a creativity aspect to the collaboration.

We ran synthetic experiments with our framework and
found that the amount of negative feedback was significantly
reduced, as presented in Section IV. The results from the
pilot study in Section V confirm this, as most participants
agreed that the robot was able to become a better accompa-
nist as the trials progressed.

Both the code for our synchronised grammars framework
as well as the music collaboration controllers and sound
samples will be open-sourced and made available from our
group’s website1.

II. RELATED WORK

Our work is at the intersection of three distinct areas
of research: human-robot collaboration, music generation
and Stochastic Context-Free Grammars. In what follows we
present the literature of each field relevant to this paper.

In [12], Fong et al. present the requirements for human-
robot collaboration based on dialogue. Though not all of
these apply to our work (as our robot does not speak), they
do note the importance of robot adaptiveness. According to
them “the robot has to be able to adapt to different operators
and to adjust its behaviour as needed”. Consequently, the
framework we present in this paper has a module just to
adapt to the preferences of the user (see III-C). Fong et al.
point out that any collaborative robot should be able to follow
or ignore human advice depending on the circumstances.
Our framework also provides the means to implement this
decision mechanism.

Cicconet et al. developed a robotic system for human-
robot collaborative percussion generation [1]. Their focus
is on understanding of social cues (in particular, visual
cues) to anticipate the next action the user will perform.
This approach is complementary to ours, as we focus on

1http://imperial.ac.uk/PersonalRobotics
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predicting the intentions of the user based on the structure
of the task.

The work of Hoffman et al. [13] in human-robot collab-
oration for task assembly is relevant as well. The authors
present a Markov process framework that can anticipate user
actions. Their tests in a simulator with 27 subjects show that
users much preferred a robot with anticipation capabilities.
This finding is echoed in [14] where experiments with an
actual robot and 16 participants show that users spent 85%
less time idling when the robot could anticipate their actions
in a collaborative assembly task. Similar to both these works
our framework predicts the most likely user action to decide
what to do next.

Another robotic drummer is described in [2]. In this case,
the approach to synchronisation is made from a developmen-
tal point of view. Nico, a humanoid robot, learns to integrate
its sensory inputs (visual, auditory and proprioceptive) to
produce the appropriate drum-beats. This contrasts with our
approach where all the information for Baxter comes from
the structure of the task and the tangible table itself.

With respect to automated music generation, already in
1986 Ebcioğlu developed an expert system to generate har-
mony to music in the style of J.S. Bach’s chorales [15].

More recently, there has been work in applying machine
learning techniques to music generation. For instance, [16]
describes an architecture based on Echo State Networks to
capture the groove of drummers. The authors define groove
as variations in timing and musical pattern. We recognise
the importance of these variations for the music produced
to sound natural and our framework can indeed produce
musical pattern variations, but not yet timing variations.

There are also approaches to music generation using
Context-Free Grammars [3], [4]. In particular, [3] describes
a system to improvise a drum accompaniment which chooses
the pattern to be played based on both the current context and
previous history. Whilst our approach is similar in that we
also derive the final action from a mixture of distributions,
we explicitly consider a secondary (influencing) grammar to
represent the actions of the other performer. Our approach
has the advantage that it predicts the most likely next
action of the collaborator rather than merely reacting to the
observed actions.

From a theoretical stand-point, in this article we show how
to synchronise two independent SCFG parser in real-time.
Zhang et al. present an offline framework for recognition
of complex temporal events using a SCFG parser extended
with Allen’s temporal logic [17]. Their framework is able to
generate the grammars automatically and can detect multi-
agent actions such as two people meeting in the street. This
system is able to represent the relations between a user
and its robot collaborator, though it does so from a global
perspective—that is, there is only one grammar to represent
the whole interaction. Such generated grammar would be
both less intuitive and more computationally expensive to
parse than our approach.

III. SYNCHRONISED GRAMMARS FRAMEWORK

In this section we describe our framework to synchronise
two Stochastic Context-Free Grammars and to add adaptabil-
ity to this synchronisation mechanism. First off, however we
start with a quick overview of SCFG parsing.

A. Stochastic Context-Free Grammars overview

Context-Free Grammars were first introduced by [18]. We
base our work on the parsing algorithm by Stolcke et al. [19]
who extended Earley’s top-down parser [20] to SCFGs. To
summarise, a grammar is defined by:

G = (N , T ,S,R,P)

whereN is the set of non-terminals, T is the set of terminals,
S is the starting non-terminal, R is the set of rules of the
form X → λ with X ∈ N and λ ∈ (N ∪ T )

∗, and P is the
set of rule probabilities, that is:

P =
⋃
∀r∈R

P (r)

The role of the parser consists in generating states of the
following form:

i : kX → λ.µ [α, γ]

where i is state-set indicator and denotes at which point this
state was created, k denotes at which point this chain was
first considered by the parser, X is a non-terminal, λ and µ
are a combination of terminals and non-terminals (and both
could be empty), the dot represents the next symbol to be
scanned, α is the forward probability (i.e. the probability of
the parser generating this rule), γ is the inner probability (that
is, the probability of generating the current string starting at
point k).

There are three functions to generate all the required states
that the parser will execute iteratively: scan, complete and
predict. We leave it to the interested reader to check the
details of each function [10], [19]. Suffice to say that scan is
in charge of incorporating inputs (terminals) into the parser,
complete takes care of moving the dots of non-terminals
whose rules are finished and predict adds states to expand
every non-finished non-terminal.

B. Prediction of next input

In order to perform synchronisation between two parsers it
is vital that we are able to predict the next most likely step of
each parser. Fortunately, the given formulation of Stochastic
Context-Free Grammars allows us to do so easily.

Let us denote the state-set SSi as the set of states
introduced in step i. Importantly, SSi are the only steps
that scan will consider when incorporating the new input
terminals into the parser.

More accurately, since scan only considers terminals, the
only relevant states will have µ = xν with x ∈ T and
ν ∈ (N ∪ T )

∗. We define this set of states as the candidate
set:

CSi =
⋃
∀x∈T

(i : kX → λ.xν [α, γ])
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Fig. 1. Flowchart representation of the synchronised grammars framework.
P(Ht) and P(Rt) are the input probability distributions for the human
and the robot predictors respectively, similarly P(Ht+1) and P(Rt+1)
are the expected terminal probability distributions for the human and robot.
P(R|H) is the conditional probability between the terminals of the robot
and the human. P(R̂t+1) is the influencing robot probability distribution.
Finally, P(R̄t+1) is the distribution from which the robot draws its next
action.

We further define CSi,s as a subset of the candidate set where
the next symbol to be read is terminal s, in other words:

CSi,s =
⋃

(i : kX → λ.sν [α, γ])

At this point, it is worth reiterating that α represents the
probability of the grammar generating the sequence up to
the dot. Consequently, adding all the α from all states which
accept s as their next terminal yields the expectation the
parser has of terminal s being the next input. That is:

P (si+1) =

∑
i:

k
X→λ.sν [α,γ]∈CSi,s

α∑
i:

k
X→λ.xν [α,γ]∈CSi

α

gives us the expected probability of encountering terminal s
at the next scan step, P (si+1). If we compute this probability
for all terminals, we find the expected probability distribution
across all terminals of the grammar. We denote the terminal
probability distribution as P(Ti).

C. Synchronisation and adaptivity

We will now present our framework to synchronise two
independent SCFG parsers. Specifically we are interested in
using the predictions of one parser to influence a second one.
A summarised version of our algorithm is shown in Fig. 1.

Following the nomenclature established in the two pre-
vious sections, we denote H and R as the set of ter-
minals of the first and second grammars respectively (in
our experiments H represents the terminals of the human
performer, and R those of the robot performer; despite this,
the analysis in this section can be applied to any two SCFG
parsers). Similarly, P(Ht) and P(Rt) represent the terminal
probability distributions at step t for the first and second
grammars.

By feeding the terminals to the parser and performing a
full parsing step (i.e. executing scan, complete and predict)
as well as applying the prediction method outlined in the
previous section we can obtain the expected terminal proba-
bility distributions for each parser: P(Ht+1) and P(Rt+1).

We are looking for a way of influencing the second
grammar. Therefore, we need to transform the first expected
terminal probability distribution into a probability distribu-
tion over the terminals of the second grammar, which we will
call the influence probability distribution, P(R̂t). To achieve
this we use a matrix whose elements denote the conditional
probability between terminals in the first and second gram-
mars. We designate this matrix as the synchronisation matrix,
S(H,R):

S(H,R) =


P (r1|h1) P (r1|h2) · · · P (r1|hn)
P (r2|h1) P (r2|h2) · · · P (r2|hn)

...
...

. . .
...

P (rm|h1) P (rm|h2) · · · P (rm|hn)


with H = {h1...n} and R = {r1...m}

With the synchronisation matrix we can convert the pre-
dicted terminal probability distribution of the first grammar
into the influence probability distribution using the law of
total probability. This is equivalent to taking the dot product
of the synchronisation matrix and the expected terminal
probability distribution:

P(R̂t+1) = normalise (S(H,R) ·P(Ht+1))

The final step is to obtain the final probability distribution
for the second grammar from both the influencing grammar
and the terminal probability distribution for the second
grammar. Though any method to combine two distributions
into a mixture could work here, we have chosen element-wise
multiplication and normalisation since it does not require
any extra parameters and favours elements which have high
probabilities in both distributions and punishes elements with
a low probability in either distribution:

P(R̄t+1) = normalise
(
P(Rt+1)�P(R̂t+1)

)
Multiplying two probability distributions as above implies

both of the factors have the same relative importance. Ac-
cordingly one has to take care to define the second grammar
in a way allows for it to be influenced. Note that if a grammar
determines its terminals with very high confidence at all
times, it will not be influenced very much by other parsers.

The synchronisation matrix is the structure we use to
introduce adaptivity in the framework. By modifying the
elements of this matrix we can change the resulting influence
probability distribution according to the preferences of each
user.

Though there are several ways of altering the synchroni-
sation matrix, we chose a punishing method whereby the
user can indicate it does not like the currently selected
terminals ri, hj . In such instances, we divide [S(H,R)]i,j by
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TABLE I
INFLUENCING (USER) GRAMMAR DEFINITION: GH

NG [SG ] {A,B,C,D,X,S,K} [S]
TG ≡ H {a,b,c,d}
NG [PG ] {S→ABXBA [1.00],

X→CD [0.50], X→CXD [0.50],
A→a [0.45], A→AA [0.45], A→K [0.10],
B→b [0.45], B→BB [0.45], B→K [0.10],
C→c [0.45], C→CC [0.45], C→K [0.10],
D→d [0.45], D→DD [0.45], D→K [0.10],
K→a [0.20], K→b [0.20], K →c [0.20],
K→d[0.20], K→KK [0.20] }

TABLE II
BASE (ROBOT) GRAMMAR DEFINITION: GR

NR [SR] {A,B,C,D,S} [S]
TR ≡ R {a,b,c,d}
NR [PR] {S→S [0.2], S→AS [0.2], S→BS [0.2],

S→CS [0.2], S→DS [0.2],
A→a [0.8], A→AA [0.2],
B→b [0.8], B→BB [0.2],
C→c [0.8], C→CC [0.2],
D→d [0.8], D→DD [0.2] }

a constant factor (heuristically set to 2.0 in our experiments)
and renormalise the ith row to add up to 1 again. This way
we effectively increase the probability of all other terminals
in R with respect to hj .

Note that our algorithm outputs a probability distribution
over the terminals of the second grammar: P(R̄t+1). Though
taking the terminal with the highest probability as the next
input would work, we choose to draw a random terminal
according to the P(R̄t+1) distribution.

IV. SYNTHETIC ANALYSIS OF FRAMEWORK

In this section, we synthetically analyse the synchronisa-
tion and adaptivity of our framework. Before that however,
we will verify that the parsing probability of a randomly
generated grammars does not change significantly.

For these experiments we use two different grammars: GH
and GR. See tables I and II for their respective definition.
GH encodes a sequence of terminals: {a, b, cn, dn, b, a} and
it accepts repetition of a given terminal any number of times
(with rules like A→a and A→AA). To add robustness, GH
can also skip any terminal through the use of rules such
as A→K, though this is left as a low-probability option.
Meanwhile, GR is set to chose a random terminal with equal
probability.

First, we wanted to verify that there are no statistically
significant differences between two sets of sequences ran-
domly generated from the same grammar. To test this we
generated two sets of 1000 independent sequences each
with 60 characters spawned from GH and obtained their
Viterbi parsing probability against GH. Spawning characters
is achieved by iteratively performing a parsing step (scan,
complete and predict); obtaining the expected probability
distribution, P(Ti); and drawing a random character from

P(Ti). Note that by Viterbi parsing probability, we refer to
the scaled Viterbi probability which, following [11], is de-
fined as: v′ = v

1/l where v′ is the scaled Viterbi probability,
v is the raw Viterbi probability and l is the length of the
sequence.

We then performed a two-tailed Mann-Whitney U test on
both sets of Viterbi probabilities and, as expected, found
the differences not to be statistically significant. The median
Viterbi parsing probability for the first set of sequences was
0.1395 and their inter-quartile range (IQR) 0.0292, whereas
for the second set we found a median of 0.1414 and IQR of
0.0261.

A. Synchronisation test

Subsequently, we verified whether one parser can influence
the state of another parser. To do so, we generated two sets
of sequences from GR; one of them by drawing the input
terminal from the expected probability distribution as before.
The other sequence was obtained by influencing GR with
GH using our framework. Note that this effectively requires
spawning an independent sequence from GH which again
we do by drawing randomly from the expected probability
distribution. The synchronisation matrix chosen here is the
identity matrix (or which is the same, H ≡ R). We then
parse these sequences (generated from GR) against GH and
obtain their scaled Viterbi probabilities, thus measuring how
much did GH influence each sequence. We expect that the
higher the influence, the higher the resulting Viterbi parsing
probability and check for differences using a two-tailed
Mann-Whitney U test once more.

We ran this test with two sets of 1000 sequences, each
sequence being 60 characters long and found the differences
in Viterbi probability to be statistically significant (p �
0.01). The median Viterbi probability of the uninfluenced
sequences was 0.0762 and the IQR 0.0114 whereas for the
influenced sequences the median probability was 0.1538 and
the IQR 0.0315.

This confirms our claim that, at least in synthetic envi-
ronments, our framework allows the state of one parser to
influence the state of another parser.

B. Adaptivity test

Finally, we tested whether the synchronisation matrix can
be adapted to the user’s preferences. To do so, we randomly
create preferred mappings from the H terminals to the R
terminals (eg. {a→ b, b→ d, c→ c, d→ a}). The preferred
mapping is meant to represent the different combinations of
H and R a user would prefer.

Two 60 characters long sequences are generated from
GR influenced by GH following our framework. The first
sequence is generated by updating the synchronisation matrix
(this is done by dividing the corresponding entry in the
synchronisation matrix by 2 and renormalising the row, fol-
lowing section III-C) when the terminals do not correspond
to the preferred mapping. For the second sequence—the
control sequence—the synchronisation matrix is not updated.
Note that, in both cases the synchronisation matrix is 4x4 and
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initialised with all its entries to 0.25, effectively representing
a random mapping between H and R.

As the sentences are generated, we record the number of
mismatches, that is the number of times the terminals did
not correspond to the preferred mapping.

Repeating this process a 1000 times and performing a two-
tailed Mann-Whitney U test reveals that sequences generated
with synchronisation matrix adaptivity had fewer mismatches
from the preferred mappings (median: 33, IQR: 6.0) com-
pared to the control (median: 45, IQR: 5.25) and these results
were statistically significant (p� 0.01).

This proves that, in a synthetic set-up, updating the syn-
chronisation matrix leads to significantly fewer mismatches
between the preference of the user and what the robot
chooses to do.

V. MUSICAL HUMAN ROBOT COLLABORATION STUDY

The synchronised grammars framework can be readily
applied to human-robot collaboration to generate music. In
the following section we describe the pilot implementation
of such a system.

A. Set-up

Figure 2 shows a picture the main components of our
system: Reactable and Baxter.

At the heart of the system we have a Reactable, a tangible
music table composed of an infra-red camera, a projector and
a semi-transparent surface. Reactable’s camera is able to de-
tect fiducials placed on top of the table using the reacTIvision
framework [21]. With adequate calibration, it is possible to
compute the position of these fiducials with respect to the
projection of the window drawn by Reactable’s computer.
We use a custom built application which uses the information
provided by reacTIvision to drive two virtual chequerboards.
Each of these chequerboards represents a musical instrument,
either melody or drums. For every chequerboard there is an
associated fiducial, and depending on the fiducial’s position
with respect to its owning chequerboard one track of music
or another is played. The system is currently programmed
with 4 drum patterns and 4 melody patterns. All patterns are
4 seconds long and do not change as the trials progress. Note
these patterns constitute the musical primitives (or terminals)
of our grammars.

Baxter is a 1.90 metres tall robot with two 7 degree-of-
freedom arms, grippers on each hand and a programmable
display. Baxter also receives the position of the fiducial with
respect to its keyboard. By showing Baxter the kinematic
configuration of the positions where each of the tracks is
active, we can direct Baxter to play a specific pattern with
quick movements2. Additionally, Baxter displays the status
of the current music session on its display.

The system needs three computers, one for the Re-
actable, another on-board Baxter and a final one running
our framework. Communication between Baxter and the
main computer is done through ROS (the Robot Operating

2A previous version of this system used inverse kinematics, but that was
found not to be responsive enough.

Feedback
KeypadReactable

Grammar
Visualiser

Baxter
Robot

Drums
selector

Melody
Selector

Fig. 2. Picture of our musical set-up with main components of the system.

System [22]) whereas the Reactable uses a bespoke library
built with Python, Unix sockets and JSON.

The role of the Stochastic Context-Free Grammars is to
represent the structure of the music about to be played.
For this study we defined the grammars by hand (Tables I
and II show the user and robot grammars respectively), but
it is also possible to generate these grammars from expert
demonstrations using the method presented in [11].

The initial synchronisation matrix was obtained by asking
a participant to generate music with our system during 5
minutes and then counting the number of co-occurrences
for each user and robot terminal. The participant controlled
both the melody and the drums and thus there was no robot
involvement. The resulting synchronisation matrix was the
starting matrix for all participants and is shown below:

0.37 0.05 0.27 0.31
0.23 0.04 0.46 0.27
0.03 0.08 0.83 0.06
0.08 0.82 0.06 0.04


Eight participants, two of them female, aged 21–34 took

part in our pilot study. Each participant had 4 trials to create
3 minutes of music with Baxter. The first of these trials
was discarded as training. Participants could also indicate the
system the track Baxter had selected was not an appropriate
match for their own choice of track. This assessment was
made by pressing the Enter key on the feedback keypad
situated next to them. Note the changes made to the syn-
chronisation matrix were kept across trials (except for the
training trial).

At the end of the trials, participants were asked to com-
plete a questionnaire with the following questions in a 5-
point Likert scale:

• Performing music with Baxter was difficult (difficult).
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Fig. 3. Number of times users gave feedback to the system by participant.

• Performing music with Baxter was engaging (engag-
ing).

• Baxter’s actions conformed to my expectations (con-
formed to expectations).

• Baxter became a better accompanist as trials progressed
(progressed).

• Baxter reacted quickly to my changes in the melody
(reacted quickly).

B. Results

Figure 3 shows the amount of negative feedback per
participant across the three trials. It can be seen in the figure
that 4 participants (S2, S4, S6 and S7) decreased the overall
amount of negative feedback. In contrast, participants S1, S3,
S5 and S8 increased the overall amount of negative feedback.
S6 did not provide feedback at all.

The final synchronisation matrices from two participants
are shown below. We remark that both matrices are different
from each other as well as from the original synchronisation
matrix.

0.53 0.06 0.19 0.22
0.37 0.01 0.18 0.44
0.01 0.08 0.80 0.11
0.05 0.54 0.32 0.09




0.18 0.01 0.52 0.29
0.24 0.00 0.47 0.28
0.01 0.08 0.89 0.02
0.19 0.47 0.03 0.31


a) b)

Figure 4 shows the results of the questionnaires. 3 people
agreed the robot reacted quickly while 3 people disagreed or
strongly disagreed with the statement. 6 people agreed the
robot improved as trials progressed. 2 people disagreed that
the robot conformed to their expectations whereas 3 agreed
that was the case. 6 people agreed or strongly agreed the
task was engaging. 3 people were neutral about whether they
had found the task difficult, the rest disagreed or strongly
disagreed.

C. Discussion

We posit the differences in the amount of negative feed-
back stem from the fact that every participant has a different
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Fig. 4. Results of the questionnaire filled in by participants after the trials.

expectation of the system’s learning curve. This is substan-
tiated by the questionnaires where the answers to whether
the robot conformed to expectations were evenly spread. It is
possible as well that different users require different updating
constants in the synchronisation matrix.

The sample final synchronisation matrices confirm that our
framework can adapt to the preferences of different users.
For instance, the first robot terminal in a) gives most of the
probability mass to the first human terminal, whereas b) gives
it to the third human terminal. Moreover, observe how these
preferences are not present in the original synchronisation
matrix.

With respect to the questionnaires, we were not surprised
to find that most users agreed the task was engaging since, as
we mentioned in the introduction, most people enjoy music.
More interesting was the fact that most people (6 out of 8
participants) felt the robot had become a better accompanist
as the trials progressed. We remark that this is a similar
ratio to the number of people which decreased their overall
negative feedback (4 out of 8). This similarity encourages us
to carry out further experimentation to establish statistical
significance.

There is no clear consensus with respect to whether the
robot reacted quickly to user’s actions and our data shows
that there were network-induced delays in Baxter’s actions.
This may also explain the divergent answers to whether the
robot conformed to the user’s expectations.

VI. CONCLUSION AND FUTURE WORK

We have presented a framework to synchronise two
Stochastic Context-Free Grammars. Our framework allows
to account for the expected values of another parser. This can
be useful in many scenarios as it provides a formal method
to combine the constraints given by the structure of one task
and the needs of another independent—but simultaneous—
task. With our framework it is possible to incorporate ex-
ternal feedback or ignore it due to task constraints. The
synchronised grammars framework further allows for per-
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sonalisation. This is achieved through the synchronisation
matrix. The synchronisation matrix is the link between the
two parsers and changing it can give rise to a wide array of
behaviours.

Our synthetic experiments confirm both the ability to let
one parser influence the other as well as the adaptivity
properties of the synchronisation matrix.

All the algorithms we used are probabilistic, which lets
the framework provide a natural approach—by randomly
drawing from a probability distribution—for a robot to play
music with variations which reflect the user’s preference.
This is relevant to a number of domains. Amongst them is
music, where small variations are vital for the music not to
sound artificial.

Music usually has an internal structure and users have
very varied tastes. With its ability to synchronise to external
patterns and adapt to users, our framework fits well with
musical human-robot collaboration. To test this, we built a
system with a tangible music table and a two-armed robot.
From the results it was observed that the robot could be
influenced by the music the users were generating as well as
to adapt to feedback by users.

Specifically, the results of our pilot study suggest that,
given enough time, the synchronisation matrix will converge
to the preferences of the user. This was corroborated by
both the user’s questionnaires where 6 out of 8 participants
agreed the robot had improved across the trials and the results
from the synthetic experiments where the mismatch rate was
significantly lower with an adaptive synchronisation matrix.

The implementation of our system can be improved
through reworking the network connectivity between Re-
actable, Baxter and the computer running the synchronised
grammars framework, which leads to latency in the robot’s
actions. This issue was highlighted by the mixed results users
gave when asked about Baxter’s reaction speed.

In the future, we plan to perform in-depth experiments
to corroborate our pilot study results in more complex
scenarios. We further aim to investigate how to extend the
synchronised grammars framework to work with more than
two grammars, thus bringing the benefits we describe in
this paper to multi-robot collaboration. Another interesting
avenue is to apply the synchronised grammars framework to
other tasks such as collaborative assembly.
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