
A Syntactic Approach to Robot Learning

of Human Tasks from Demonstrations

Kyuhwa Lee

Submitted in part fulfilment of

the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Electronic Engineering

Imperial College of Science, Technology and Medicine

Declaration

I herewith certify that all material in this dissertation which is not my own

work has been properly acknowledged.

Kyuhwa Lee

2

The copyright of this thesis rests with the author and is made available

under a Creative Commons Attribution-Non Commercial-No Derivatives

licence. Researchers are free to copy, distribute or transmit the thesis on

the condition that they attribute it, that they do not use it for commercial

purposes and that they do not alter, transform or build upon it. For any

reuse or distribution, researchers must make clear to others the licence terms

of this work.

3

To my family.

4

Abstract

The successful development of general-purpose humanoid robots,

in contrast to traditional pre-programmed problem solving ma-

chines, has opened a new research area of how a robot could

be programmed by an end-user, not engineers, to suit individ-

ual needs.

In this respect, Robot Learning from Demonstration has been ac-

tively studied, aiming to enable robots learn various tasks from

human users. Although much effort has been put, there are many

challenges still remaining until the goal is realized. One of the

important challenges is the automatic learning of task represen-

tations and reuse of the learned tasks, where each task can be

expressed as a series of primitive action components. To deal

with such challenges, syntactic approaches to task learning and

related issues are investigated.

Firstly, efficient goal-oriented task representation methods using

stochastic context-free grammars are studied, which enable robots

to understand the human’s intended actions even in the presence

of both observation errors and human execution errors. By ex-

ploiting the task knowledge, it is demonstrated that the robot can

correctly identify unexpected, out-of-context actions and perform

5

the intended actions under reasonable amount of noise. Taking

a step further, the automatic learning of these task representa-

tions from human demonstrations are studied. It is demonstrated

throughout the experiments that the robot is able to learn crit-

ical task structures and generalize them. This is essential for

understanding more complex tasks sharing the same underlying

structures. Following these studies, an unsupervised discovery of

the optimal set of primitive action detectors required to represent

a task is studied.

Through a diverse set of real-world and simulated experiments

that include learning object-related games, postural sequence tasks

of dance and surveillance tasks, this thesis demonstrates the effec-

tiveness of syntactic approaches for robot learning from demon-

strations.

6

Acknowledgments

I have been greatly privileged to work with my supervisor, Dr. Yiannis

Demiris, who has been an excellent academic adviser as well as personal

adviser during my PhD studies. Yiannis has been incredibly patient and

wise on guiding my research throughout countless discussions, making sure

that I focus on the important topic instead of getting distracted to too

many seemingly interesting topics, while providing a lot of opportunities for

meeting with many other prominent researchers around the world.

I was also very fortunate enough to have the opportunity to work with

Dr. Tae-Kyun Kim, who has substantially influenced my research. His

deep knowledge in computer vision and machine learning and critical way

of thinking were essential on developing my work.

I also acknowledge Dr. Angelo Cangelosi, who has provided the invaluable

RobotDoc Collegium experience over 4 years, a multi-national robotics doc-

toral training network. It has undoubtedly broadened my research horizon

and inspired me at different stages of my education.

My PhD experience would have been incomplete without the teaching

experience I gained from the exceptional course director, Mr. Liam Madden.

Liam consistently researched on effective teaching methods using various

state-of-the-art technologies, which I was able to learn while closely working

with him.

7

I sincerely thank my family who have been always loving, supporting and

trusting me throughout the studies. My PhD would have been impossible

without them.

I thank our members of Personal Robotics Lab who are excellent students

and post-docs: Dimitri Ognibene, Yanyu Su, Arturo Ribes, Harold Soh,

Miguel Sarabia, Tom Carlson, Yan Wu, Simon Butler, Sotirios Chatzis, Eris

Chinellato, Dimitrios Korkinof, Raquel Ros Espinoza, Ayşe Küçükyılmaz,

Alexandre Coninx, Yixing Gao, Theodosis Georgiou, Nicola Catenacci, Jonathan

Classens, Bálint Takács, Paschalis Veskos and Murilo Fernandes Martins.

8

Contents

1. Introduction 21

1.1. Motivation . 22

1.2. Thesis Summary . 23

1.3. Contributions . 24

1.4. Roadmap . 25

1.5. List of resulting publications 27

2. Background and Related Work 28

2.1. Introduction . 28

2.2. Robot Learning from Demonstrations 28

2.3. Task Representation and Recognition 30

2.3.1. Task Representation through SCFG 32

2.3.2. Task Recognition through Probabilistic Parsing 34

2.4. Task Structure Learning . 37

2.5. Task Structure for Attention Control 39

2.6. Summary . 42

3. Syntactic Approaches to Task Representation and Recogni-

tion 43

3.1. Introduction . 43

9

3.2. Experiments . 43

3.2.1. Experiment Design . 45

3.2.2. Findings . 53

3.3. Summary . 57

4. Learning Task Structures from Demonstrations 60

4.1. Introduction . 60

4.2. The Discovery of Task Structures and Parameters 62

4.2.1. Active Substring Discovery 64

4.2.2. Considering Input Samples with Uncertainty 66

4.2.3. Measuring the Quality of a Grammar 69

4.3. Bag-of-Balls Experiment . 70

4.3.1. Experiment Design . 70

4.3.2. Findings . 73

4.4. The Towers of Hanoi Experiment 74

4.4.1. Experiment Design . 75

4.4.2. Findings . 78

4.5. The Dance Imitation Experiment 83

4.5.1. Experiment Design . 83

4.5.2. Findings . 88

4.6. The Effect of Pruning Factors 92

4.7. Summary . 94

5. Learning Action Components from Demonstrations 97

5.1. Introduction . 97

5.2. Automatic Discovery of Primitive Action Detectors 97

5.2.1. Discovery of Candidate Symbols 99

5.2.2. Selecting the Number of Symbols 100

10

5.3. Experiments . 102

5.3.1. Experiment Design . 102

5.3.2. Findings . 104

5.4. Summary . 109

6. Action Anticipation and Attention Allocation using Task

Structures 111

6.1. Introduction . 111

6.2. Using Task Structure Information for Action Anticipation . . 113

6.3. Experiments . 118

6.3.1. Experiment Design . 118

6.3.2. Findings . 119

6.4. Summary . 126

7. Conclusions and Future Work 127

7.1. Conclusions . 127

7.2. Open Questions and Future Work 129

Bibliography 130

Appendix A. Experimental Setup 147

A.1. Robot Platform . 147

A.2. Motion Capture System . 148

11

List of Figures

2.1. A simple grammar that represents a task where a robot en-

ters one or more rooms until “meet” event is happened, and

returns to the initial location. 33

3.1. Building problem-dependent task representations from a pool

of generic task templates. Primitive action detectors are

trained offline to convert the input signals into the time-series

terminal symbols for the SCFG parser. By observing a hu-

man demonstration and parsing the observation, the system

classifies the demonstration into a corresponding task and

assigns the task property, e.g. 1, 2, ... 4. 44

3.2. The procedure of the experiment. 46

3.3. Software modules used in the experiment. 47

3.4. Task templates used in the experiment. Three different types

of tasks are shown in the top part (GDROP, GPLACE, GNEXTBOX),

followed by non-terminal symbols commonly shared across

three grammars. 49

3.5. Examples of object segmentation. Images are acquired from

the both eyes of iCub, from which depth map is computed

and blobs closer than a threshold are segmented. 51

12

3.6. Extracted patches and their color histograms. In histogram

images, x-axis represents the color bin and y-axis represents

the frequency. Finger colors in the patch are suppressed for

better tracking performance. 51

3.7. iCub observing the object organization task demonstrated by

a human participant. 54

3.8. iCub performing task by executing parsed primitive actions. . 54

3.9. Sample terminal symbols generated by primitive action de-

tectors and the parsed result. The action symbols with the

highest likelihood are underlined. The likelihood values of

aobj in time steps 2 and 3 are unexpected, which are cor-

rected after concluding that the demonstration was a DROP

task. For naming conventions, please refer to Figure 3.4. . . . 56

3.10. N:Nextbox, D:Drop, P:Place, X:Recognition Failure 57

3.11. Confusion Matrix . 57

4.1. Overview of the approach to task learning with an example

scenario. The input training sequences are converted into

streams of symbols with probability, respectively indicated

by circles and numbers below, from which the original struc-

ture is uncovered using grammatical representations. The ac-

quired knowledge is used to better recognize unforeseen, more

complex tasks (test sequences) that share the same structure

components. 61

13

4.2. (a) Initial naive grammar. (b) After Substituting AB with

X, AC with Y , and XX with Z. (c) After Merging (X,Y)

to X. (d) After Merging (X,Z) to Z. (e) After Merging

(S,Z) to S. Please note that uncertainties of symbols are not

considered in this example. 64

4.3. Learning summary . 71

4.4. Description length ratios of grammars generated by different

methods. The lower score indicates that the grammar is more

compact yet maintains sufficient expressive power. 72

4.5. Actual MDL scores for each method compared with the model

grammar. MDL scores are averaged over 10 trials for each

noise condition. The graph is shown with a 2% step for better

view. A lower score indicates that the grammar is more com-

pact yet reasonably expressive. How these scores affect the

performance in the real world will be discussed in Sections

4.4 and 4.5. 72

4.6. The obtained grammars using the method in (Kitani, Yoichi,

and Sugimoto, 2008)(a) and the proposed method(b) from

data with noise probability 0.08. 73

4.7. (a-b) A sample tracking screen while a human participant is

solving the puzzle with 4 disks. Compared to the low-noise

condition (a), the high-noise condition (b) shows overexposed

spots which often makes the tracker unstable. The tracker

immediately resets the position if lost by searching the de-

sired blob from the entire region of the image. (c) shows iCub

performing parsed primitive actions. A demo video is avail-

able at: http://www.youtube.com/watch?v=S99ViThK050 . 76

14

4.8. Primitive actions defined in Towers of Hanoi experiment.

The system is equipped with these 5 primitive action detec-

tors which generates symbol probability during observation. . 77

4.9. Success rates using our method, base method and the pure

imitation. Scenarios LL and LH: Train on the low-noise con-

dition and test on low- and high-noise conditions, respec-

tively. Scenarios HL and HH: Train on high-noise condition

and test on low- and high-noise conditions, respectively. The

fact that a single mistake while parsing a long test sequence

causes a failure makes this problem non-trivial. 78

4.10. Detailed results with average MDL scores for comparison.

Each case is tested on 75 sequences. MDL score is not avail-

able for the pure imitation as it does not rely on any learned

model. It is worth noting that lower MDL scores generally

lead to higher success rates. 79

4.11. Error statistics of demonstrations using 4 disks on each noise

condition. Note that even in the low-noise condition, there

are only 5 trials observed with all correct symbols, which

means that in most cases the pure imitation will not lead to

the desired goal state. Each testing sequence is composed of

45 primitive action symbols, which makes this problem non-

trivial as only a single mistake will make it fail to achieve the

goal. 79

4.12. A test experiment scenario where 4 disks are used, requiring

45 actions to be correctly executed to reach the goal. 81

15

4.13. (a) A sample grammar that captured the meaningful task

components such as LAD, LBD, and LCD, which can be

used to enforce the observation to be consistent with the

demonstrator’s intended actions. CADSS and SLBAS come

from occasional noisy examples and hence they are assigned

very probabilities. (b) A grammar learned from an ideal

(noise-free) dataset. (c) A grammar learned from the same

dataset of (a), but with a pruning threshold of 0.15. Please

see Section 4.6 for more detailed analysis on pruning effects. . 82

4.14. 9 motion primitives used in this experiment and a demonstra-

tion example. Please see the following video for better visu-

alization: http://www.youtube.com/watch?v=S99ViThK050. 84

4.15. 3 types of dance representations used in the experiment. Please

see Figure 4.14 for reference. In training set, there are 5 tri-

als for each value of n (sequence length), which results in 40

dance demonstrations (225 input symbols). The testing set

has 6 trials for each n, which results in 36 dance demonstra-

tions (450 input symbols). 85

4.16. The informative human joints chosen to be used for calcu-

lating the ASV and ASD values. As these joints are often

overlapped across multiple motion primitives, the number of

the joint sets are reduced to four. 85

4.17. The ASV(a) and ASD(b) of the movement sequence: the

used joints set for each time step is marked on the bottom

using corresponding color. The zero-crossings of ASV with

sufficiently low ASD value are chosen as the segmentation

points. 87

16

4.18. iCub performing parsed primitive actions. Each figure from

the left to right respectively represents primitive actions C,

D, E, and F. The video containing full movements can be

seen on: http://www.youtube.com/watch?v=S99ViThK050. 89

4.19. Detailed results with average MDL scores for comparison.

Each scenario has 36 sequences, and the total number of sym-

bols per scenario is 450. “Correct” column shows the number

of correctly recognized symbols after parsing, where in pure

imitation case it is equivalent to the number of action detec-

tor errors. MDL score is not available for the pure imitation

as it does not rely on any learned model. It can be seen that

the lower MDL scores generally lead to higher success rates. . 90

4.20. Acquired grammars from automatically segmented dataset

using the method described in Section 4.5.1. The error in

the segmentation leads to a higher error rate on detectors,

which is regarded as the high-noise scenario. 91

4.21. Learned grammars from manually segmented dataset, noted

as the low-noise scenario. Note that only segmentation was

done manually, where symbol detectors are still trained and

tested in the same way as in automatically-segmented dataset. 91

17

4.22. The effect of different pruning parameters. In this exper-

iment, we trained from all training data, i.e. all samples

from both low-noise and high-noise conditions, and similarly

tested on all testing samples. It can be seen that although

overall MDL score decreases as threshold increases, the re-

sulting grammar loses generality and shows poor performance

on testing data. As in the previous experiments, a trial is re-

garded as fail even if there was a single error in parsed symbols. 93

4.23. The comparison of training times over different prune param-

eters. Since rules are more likely to be pruned as the thresh-

old increases, the overall learning time tends to decrease. It

was tested on a Linux desktop with i7 3.2GHz CPU, 16GB

RAM, Python 3.2. 93

5.1. Overview: Candidate symbols are generated using agglomer-

ative hierarchical clustering approach, where too general or

specific symbols are subsequently filtered out by measuring

the model complexity and likelihood. 98

5.2. Summary of action symbol selection. 103

5.3. An example clustering tree created (top), showing only the

top 30 nodes for better view, and eight action symbol repre-

sentations (bottom) obtained from the Towers of Hanoi dataset.105

5.4. The spanning values of description lengths obtained from the

Towers of Hanoi (top) and Dance (bottom) data. Best cases

(S∗) obtained using the method described in Sec. 5.2.2 are

indicated by square markers. (Best viewed in color.) 106

18

5.5. Results on the Towers of Hanoi (T) and Dance (C) dataset.

α and β denote mean ± standard deviation of −logP (M)

and −logP (D|M), respectively. Votes (V) are computed by

the method described in Section 5.2.2, whereas success rates

(S) are computed by comparing the parsed symbols. 107

5.6. Representative visualized snapshots of the Dance dataset. . . 108

5.7. Example grammars learned from data. (a) A grammar gen-

erated by a system ψ6 having 6 symbols A-F. (b) has 1 less

symbol, where one of the symbols represents two different

actions. (c) has 1 more symbol, where the same action could

be represented with two different symbols. Low-probability

rules (< 3%) exist due to input data noise. 108

6.1. Single vs Random event. Circles and squares denote the at-

tended point when MEA and MMIA were used, respectively.

With MEA, window 1 is favored from t=7, whereas with

MMIA the system loses interest on window 1 and starts ex-

ploring window 2. As a result, window 1 is watched only 4

times, compared to 10 with MEA, without losing too much

information that is required to recognize the event happened

inside. 120

6.2. Two concurrent events. Circles and squares denote the at-

tended point when MEA and MMIA were used, respectively. 121

19

6.3. Example Delivery task scenario. The blue and red boxes

show window attended using MMIA and MEA, respectively.

The bottom left and right graphs show the expected entropy

of windows under MEA policy, and the mutual information of

windows under MMIA policy, respectively. (VIRAT-000006,

frames 14648-16277) . 124

6.4. ROC curves obtained under different attention policies and

their respective ROC area values. 125

A.1. iCub performing tasks demonstrated by human partners. . . 148

20

1. Introduction

Since the realization of the technological advancement in humanoid robotics,

it has become a desirable property for a humanoid robot to be capable of

performing more human-like interactions with human users who are not

essentially robot experts. Also commonly known as Imitation Learning,

the Learning from Demonstrations (LfD) methods allow a human user to

add new capabilities to the robot in an intuitive manner without explicit

re-programming. A large amount of research has been conducted in this

domain in recent years from the motor-level trajectory learning to the

symbolic-level task structure learning, yielding various types of learning al-

gorithms and knowledge representations. This thesis investigates the prob-

lems involved in making a robot to learn and imitate structured human

tasks by integrating syntactic methods into the LfD paradigm.

The goal of the motor-level trajectory learning is to learn a human-like

continuous movement of an action, while the symbolic-level task structure

learning aims to learn the relationship between these multiple actions. Com-

pared to trajectory learning, task structure learning has been relatively less

explored, although it has a significant impact in many human-robot inter-

action areas, such as action anticipation, human intention detection, atten-

tion control, turn taking and assistive robotics. Syntactic representations

are well suited for these problems as they provide an efficient and intuitive

21

way of representing a task as a composite of actions. This thesis presents a

computational model of learning task representations from human demon-

strations using syntactic approaches and demonstrates its effectiveness on

various real-world scenarios.

1.1. Motivation

Humans are capable of learning novel activity representations despite the

noisy sensory input by making use of the previously acquired contextual

knowledge, since many human activities often share the similar underlying

structures. For example, when we observe someone’s hand transferring an

object to another place, where the grasping action cannot be seen due to

some occlusions, we can still infer that a grasping action occurred before

the object was lifted. From this analogy, if a robot has knowledge about a

minimal set of basic actions which are frequently used in human-robot in-

teraction environments, it can boost the performance of learning new tasks.

The use of such knowledge enables a learner to incrementally acquire a new

knowledge without the need of excessive verification processes, resulting in

a more natural interaction.

In the real-world environment, there are still many obstacles yet to be

solved for a robot to be successful in imitation learning. One of them is

dealing with the limited capability of sensors of robotic systems in real-

world environment, such as noise and occlusions. It is often desirable to

minimize the sensory input error to allocate more resources on solving task-

level problems.

To realize this idea as a formal computational model of the human task

learning mechanism, the following requirements need to be satisfied:

22

• It should be able to represent the structure of a task in an intuitive

and efficient way.

• It should be able to automatically extract the underlying task struc-

tures which may be hierarchical and recursive.

• It should be able to cope with observation errors as well as human

demonstration errors, which are inherent in many real-world scenarios.

This thesis aims to address these challenges by augmenting the LfD ap-

proaches with a robust task representation framework based on stochastic

context-free grammars (SCFG), which is an effective tool for defining the

semantic constraints of a task.

1.2. Thesis Summary

The Learning from Demonstrations paradigm integrated with syntactic meth-

ods allows intuitive and flexible task representations while providing mech-

anisms to automatically recognize and extract important task structures

from human users, as well as the execution of actions. This thesis provides

how the LfD paradigm can be realized with a syntactic approach using

efficient task representation methods, followed by the robust recognition

of these tasks from observation considering the uncertainty of the sensory

input. Subsequently, the automatic learning of these tasks from human

demonstrations is studied, which is further developed to discover a set of

primitive action detectors that can be used as the building blocks of tasks.

Finally, the possibility of predicting actions online based on the learned task

structure during the observation is investigated.

23

1.3. Contributions

This thesis offers the following contributions:

(1) It proposes a novel approach to the adaption of the stochastic context-

free grammars (SCFG) framework into the LfD paradigm in three important

areas: task recognition, task learning and task execution.

(2) It provides experimental findings (Chapters 3.2.2 and 4.3-4.5) while

using SCFG as a task representation framework throughout multiple real-

world and simulated tasks including games, dance and surveillance. Various

action detection methods for generating symbols with confidence values on

different types of input signals are demonstrated and the related issues while

observing human movements are discussed. The dataset used include vision

datasets obtained from cameras, 3-D point cloud datasets obtained from a

motion capture system and simulated datasets.

(3) A computational model of the structured human task learning is de-

veloped that automatically discovers and extracts the important aspects of

task structures in the form of SCFG.

(4) It addresses effective methods to deal with observation errors and

human demonstration errors that occur while training and testing the robot

by explicitly taking into account the uncertainties inherent in human action

detectors. The effect of the grammar rule pruning factor, an important

factor while learning task grammars, is systematically tested and the results

are compared in terms of learning time, model complexity and accuracy. It

is also experimentally shown that the quality score of a learned grammar,

which is at its best when the model complexity and the model accuracy are

perfectly balanced, coincides well with the expected theoretical results.

(5) As a generalization to the above method, an automatic learning ap-

24

proach to discovering the optimal set of primitive action symbols for effi-

ciently describing a task is developed and the experimental findings on two

different datasets are reported.

1.4. Roadmap

The rest of the thesis is organized as follows:

Chapter 2 - Background and Related Work describes the related

research and background information about other LfD approaches and syn-

tactic models. Furthermore, techniques commonly used for detecting actions

and their applications are also presented.

Chapter 3 - Syntactic Approaches to Task Representation and

Recognition presents the utility of SCFG-based task representation meth-

ods as a tool for defining task templates and demonstrates how it can be

used to infer the intended action of the human demonstrator under noisy

observation settings.

Chapter 4 - Learning Task Structures from Demonstrations

presents the automatic learning of task structures and parameters from

human demonstrations. The learning effect under different noise conditions

is investigated as well as different pruning factors.

Chapter 5 - Learning Action Components from Demonstrations

further presents the automatic learning of action detectors to optimally

represent a task by utilizing the method described in Chapter 4.

Chapter 6 - Action Anticipation and Attention Allocation using

Task Structures presents a step towards dynamic attention control system

for efficient long-term task recognition. The structured representations of

tasks are exploited to actively decide not only where, but also when to

25

retrieve information to maximally improve the recognition of task activities

given bounded computational resources.

Chapter 7 - Conclusion summarizes the key points of this thesis and

presents possible future extensions of this research.

26

1.5. List of resulting publications

• Kyuhwa Lee, Yanyu Su, Tae-Kyun Kim and Yiannis Demiris:

“A Syntactic Approach to Robot Imitation Learning using Probabilis-

tic Activity Grammars,” Robotics and Autonomous Systems, Elsevier,

Volume 61, Issue 12, pp.1323-1334, 2013. (Chapter 4)

• Kyuhwa Lee, Tae-Kyun Kim and Yiannis Demiris: “Learn-

ing Reusable Task Components using Hierarchical Activity Grammars

with Uncertainties,” IEEE International Conference on Robotics and

Automation, pp.1994-1999, 2012. (Chapter 4)

• Kyuhwa Lee, Tae-Kyun Kim and Yiannis Demiris: “Learning

Action Symbols for Hierarchical Grammar Induction,” The 21st In-

ternational Conference on Pattern Recognition, pp.3778-3782, 2012.

(Chapter 5)

• Kyuhwa Lee and Yiannis Demiris: “Towards Incremental Learn-

ing of Task-dependent Actions using Probabilistic Parsing,” IEEE In-

ternational Conference on Development and Learning, pp.1-6, 2011.

(Chapter 3)

• Yanyu Su, Yan Wu, Kyuhwa Lee, Zhijiang Du, Yiannis Demiris:

“Robust Grasping for an Under-actuated Anthropomorphic Hand un-

der Object Position Uncertainty,” IEEE-RAS International Confer-

ence on Humanoid Robots, pp.719-725, 2012. (Chapter 4)

• D. Ognibene, Y. Wu, K. Lee, and Y. Demiris: “Hierarchies in

Embodied Action Perception,” in Computational and Robotic Models

of the Hierarchical Organisation of Behaviour, G. Baldassare and M.

Mirolli (eds), Springer Verlag, pp.81-98, 2012. (Chapters 3 and 4)

27

2. Background and Related Work

2.1. Introduction

This chapter first presents the prior work in the Learning from Demonstra-

tions (LfD) domain with the examination of various issues related to this

research field. It will then move on to the topic of human task representa-

tion methods that are essential for expressing the learned task knowledge.

Prior work of using syntactic approaches on modeling human behaviors will

be reviewed, followed by algorithmic issues related to stochastic context-free

grammars which will be used as basis for representing tasks in this thesis.

2.2. Robot Learning from Demonstrations

There has been a growing interest in developing autonomous robots which

are capable of learning goal-directed actions by imitating humans using

multi-level representations of actions (Kuniyoshi, Inaba, and Inoue, 1994;

Pardowitz, Knoop, Dillmann, and Zollner, 2007; Argall, Chernova, Veloso,

and Browning, 2009).The LfD has been widely studied over the past decade

with the aim of providing an efficient means of teaching tasks to robots

(Argall, Chernova, Veloso, and Browning, 2009; Billard, Calinon, Dillmann,

and Schaal, 2008; Asada, Ogino, Matsuyama, and Ooga, 2006; Dillmann,

2004; Schaal, 1999; Kuniyoshi, Inaba, and Inoue, 1994). Instead of explicitly

28

programming the required sequence of actions, it is intended that human

users teach robots in a more natural way. Achieving this capability is, of

course, quite challenging (as discussed in (Breazeal and Scassellati, 2001;

Breazeal and Scassellati, 2002; Thrun and Mitchell, 1995)), and Dautenhan

and Nehaniv (Dautenhahn and Nehaniv, 2002) classify the problem into the

following domains: who to imitate, when to imitate, how to imitate, what

to imitate, and how to judge if an imitation was successful.

It is known that humans tend to interpret actions based on goals rather

than motion trajectories (Baldwin and Baird, 2001; Woodward, Sommerville,

and Guajardo, 2001) and this thesis frames the problems of LfD in this per-

spective. More emphasis is put on the issue of what to imitate, where a robot

does not intend to copy the exact trajectories of actions, but to deduce the

intention of the demonstrator. As stated in (Jansen and Belpaeme, 2006),

this requires a different approach to solving the problems of how to imitate,

e.g. (Billard, Epars, Calinon, Schaal, and Cheng, 2004; Billard, 2001; Erl-

hagen, Mukovskiy, Bicho, Panin, Kiss, Knoll, Schie, and Bekkering, 2006;

Wu and Demiris, 2010; Nguyen-tuong and Peters, 2008; Gurbuz, Shimizu,

and Cheng, 2005; Soh, Su, and Demiris, 2012), where more emphasis is put

on the imitation of observed motion trajectories using robot’s own capa-

bilities in continuous time domain. In (Lockerd and Breazeal, 2004; Ekvall

and Kragic, 2008; Bentivegna, Atkeson, and Cheng, 2006; Calinon, Guenter,

and Billard, 2005; Demiris and Hayes, 2002; Lee, Lee, Thomaz, and Bobick,

2009; Chao, Cakmak, and Thomaz, 2011), various types of tasks are defined

to include action sequences with some degree of recursion, but they differ

from the main contribution of this thesis as hierarchically structured tasks

are not considered.

29

2.3. Task Representation and Recognition

The task representation is an important issue in the LfD framework. There

is a vast amount of work done on human task representation from com-

puter vision and machine learning communities, as summarized in (Aggar-

wal and Ryoo, 2011). Language-inspired human behavior representation is

one of the important subjects in the research domains of autonomous robots

and robot intelligence (Cangelosi et al., 2010; Dominey and Boucher, 2005;

Dominey, 2002; Cangelosi and Parisi, 2002; Petit et al., 2013). As this thesis

mainly focuses on the task-level learning, syntactic models such as stochas-

tic context-free grammars (SCFG) and hidden Markov models (HMM) are

used. SCFG is essentially a stochastic model that extends context-free gram-

mar similar to HMM which extends regular grammars, but with stronger

expressive power. SCFG are particularly well suited for our purpose due

to its easiness on representing hierarchies of actions and robustness against

observation noise. Advantages on using SCFG model in the LfD framework

are summarized as follows:

First, it can utilize syntactic knowledge instead of relying on pure statis-

tics to solve a problem as they can be expressed. Second, it can clarify

ambiguous actions detected at the sensory level during the parsing process.

Once the parsing is done, the action grammar rule with the highest prob-

ability is selected and used to explain the input symbols generated by the

primitive action detectors. Third, although it shares many properties with

HMM, it allows to express more general task structures, e.g. counting mod-

els such as anbn. Last but not least, because of its compact representation

using linguistic constructs, it allows a wide range of users to define actions

which does not require high level of technical skills. It is worth noting

30

that the term “context-free” in SCFG is used as a contrast to “context-

sensitive”, which is another type of grammars, instead of meaning that it

lacks contextual knowledge.

An action is defined using terminals, non-terminals and rule probabilities.

A terminal, conventionally written in lower case, is generated by a primi-

tive action detector with an associated probability. It can be easily added

by defining an additional event detector. A non-terminal, conventionally

written in upper case, is an intermediate symbol that can be regarded as a

higher-level description. Rule probability, similar to transition probability

in HMM, is applied when the state is expanded.

In (Ryoo and Aggarwal, 2007), Ryoo defines a game activity representa-

tion using context-free grammars (CFG) which enables a system to recog-

nize events and actively provide proper feedback to the human user when

the user makes unexpected actions. In (Ivanov and Bobick, 2000), Ivanov

et al. define a task using SCFG, a probabilistic version of CFG, to recog-

nize more complicated set of actions, e.g. music conducting gestures. They

use HMM to detect primitive actions such as lifting a hand. In (Ota, Ya-

mamoto, Nishimoto, and Sagayama, 2008), Ota et al. use SCFGs to describe

the structures of Kanji using few stroke shapes and relative position labels.

In (Kitani, Yoichi, and Sugimoto, 2008), Kitani et al. use SCFG to model

complex employee-customer transaction activities in a convenience store,

whereas Moore et al. use SCFG to model the Black Jack card game (Moore

and Essa, 2002). In (Lee and Demiris, 2011), a robot imitates human demon-

strations of organizing objects with a box using SCFG as task templates and

associating each object with a corresponding grammar, where primitive ac-

tions such as hand approaching an object are defined using HMM.

Rizzolatti et al. (Rizzolatti and Arbib, 1998) propose that the action ob-

31

servation/execution matching system provides a necessary bridge from ‘do-

ing’ to ‘communicating’, as the link between actor and observer becomes

a link between the sender and the receiver of each message. They posit

that action-recognition mechanism has been the basis for language develop-

ment. An in-depth analysis of the structure of actions and its relation to

human actions are presented in (Pastra and Aloimonos, 2012), while Aloi-

monos et al. (Aloimonos, Guerra-Filho, and Ogale, 2009) give a detailed

background review on relationship between human actions and formal lan-

guages, as well as applications to health, artificial intelligence and cognitive

systems. For other interesting areas that utilize CFGs as the underlying

framework, e.g. computational biology and speech recognition, please refer

to (Higuera, 2005).

2.3.1. Task Representation through SCFG

In this thesis, a task is represented as a grammar, which consists of terminal

symbols, non-terminal symbols, production rules and a start symbol. The

terminal symbols correspond to primitive actions, a basic set of human ac-

tions, which are the output of human action detectors. In this way, input

signals from the sensory input are converted into a stream of terminal sym-

bols. Non-terminal symbols represent abstract symbols that consists of one

or more terminal and/or non-terminal symbols. As a convention, terminals

are represented with lower-case letters and non-terminals are represented

with upper-case letters. The production rules express how a non-terminal

can be expanded, where in SCFG, every production rule is associated with

a rule probability value. The start symbol is a non-terminal symbol that

defines the starting state of the parser. Throughout the remaining of the

thesis, the following notations will be used:

32

Σ: A set of terminal symbols

N : A set of non-terminal symbols

R: A set of rule productions

S: The start symbol

Given any X ∈ N , a production rule r ∈ R is in the form of X →

λ1|λ2|...|λn, where ∀k λk ∈ (Σ ∪N)∗ and
∑n

j=1 P (X → λj) = 1.

To illustrate how we can represent a task using SCFG, suppose the fol-

lowing scenario. Assume that a robot is given a task to enter one or more

rooms, meet a person, and come back to the initial location. Assume that

there can be more than one door to reach the target room. Consider the

following simple grammar:

S → ROOM [1.0]
ROOM → enter ROOM exit [0.7]
ROOM → enter meet exit [0.3]

Figure 2.1.: A simple grammar that represents a task where a robot enters
one or more rooms until “meet” event is happened, and returns
to the initial location.

Figure 2.1 shows an example where “enter”, “meet”, and “exit” are ter-

minals, and “S”, “ROOM” are non-terminals. This grammar representation

enforces a robot to open and close the same number of doors when going in

and out of the room. Depending on the required resolution of task repre-

sentation, it is always possible to further break down “enter”, “meet”, and

“exit” actions into several sub-actions. The issue of defining the scope of

a symbol will be discussed in Chapter 5. Since the recursion rule (ROOM

→ enter ROOM exit [0.7]) has a relatively higher probability, this grammar

prefers an input sequence with longer length. It is also worth noting that

33

this type of task cannot be represented using HMM. For example, HMM

cannot represent tasks of the form anbcn, e.g. the task defined in Figure

2.1, where a, b and c are primitive actions and n is the number of execution.

2.3.2. Task Recognition through Probabilistic Parsing

Given a task representation G in an SCFG form, it is possible to parse the

input symbols and compute the likelihood P (input|G) as well as most likely

parse tree. The parsed result provides two important information: task

classification and observation error correction. Among multiple grammars,

or tasks, it is possible compute choose the grammar G∗ that best explains

the observation, i.e.

G∗ = argmax
j

P (input|Gj) (2.1)

In this thesis, the input terminal symbols are parsed using a probabilistic

version of the Earley parser, which not only considers the rule probability

but also the terminal symbol probability (Ivanov and Bobick, 2000). As

in the Earley parsing algorithm, the notion of a State is expressed in the

following way.

i : Xk → λ.Y µ (2.2)

where ‘.’ is the marker of the current position in the corresponding pro-

duction., λ and µ are strings of mixed terminal and non-terminal symbols

with arbitrary length. In the above notation, i is the current marker po-

sition in the input and the non-terminal symbol X is expanded into λY µ,

starting at the position k in the input, generating some substring starting

at position k. Given an input w1w2...wk...wm, where w1 is the first terminal

34

symbol and wm is the last terminal symbol of µ, a non-terminal X in the

above case is said to dominate the substring wk...wm. For each position,

the parser generates a set of possible states where each state “explains” the

strings which it dominates. The parsing is done by iteratively applying the

following transitions.

Scanning

During the scanning step, the parser reads the next input symbol and ver-

ifies it against all pending hypotheses states. Assuming that a is a terminal

symbol of the current input, a new state is added for every rule expecting

the terminal symbol a.

i : Xk → λ.aµ [α, γ] ⇒ i+ 1 : Xk → λa.µ [α′, γ′]

α′ = α(i : Xk → λ.aµ)P (a)

γ′ = γ(i : Xk → λ.aµ)P (a)

∀a, s.t.P (a) > 0

(2.3)

where α and γ are forward and inner probabilities, similar to the notion

used in Hidden Markov models, and the expression A ⇒ B is used in the

context of state generation to read “A generates B”.

Note the increase in i index. This signifies the fact that scanning step

inserts the states into a new state set for the next iteration of the algorithm.

P (a) accounts for uncertainty in the input, i.e. the probability value of

the low-level detector. To handle substitution error, which occurs when an

incorrect terminal replaces the correct one in the input stream, input to the

parser is an array of all possible terminal probabilities.

35

Completion

Completion uses the results of scanning to advance positions in the parse

tree. In its simplified probabilistic form, completion step generates following

states:











j : Xk → λ.Y µ [α, γ]

i : Yj → ν. [α′′, γ′′]
⇒ i : Xk → λY.µ [α′, γ′] (2.4)

where

α′ =
∑

∀λ,µ

α(i : Xk → λ.Y µ)γ′′(i : Yj → ν.)

γ′ =
∑

∀λ,µ

γ(i : Xk → λ.Y µ)γ′′(i : Yj → ν.)

Due to possible recursions, recursive correction needs to be applied to

probability computations. This topic is out of the scope of this paper, and

we direct you to (Ivanov and Bobick, 2000) for further reading.

Prediction

Prediction step is used to hypothesize the possible continuation of the

input based on the current position in the parse tree:











i : Xk → λ.Y µ [α, γ]

Y → ν
⇒ i : Yi → .ν [α′, γ′] (2.5)

where

α′ =
∑

∀λ,µ

α(i : Xk → λ.Y µ)P (Y → µ)

γ′ = P (Y → ν)

The prediction step introduces the rule probabilities P (Y → ν) associated

36

with the productions Y → ν into the parsing process. Similar to Completion

step, recursive correction is required due to possible recursions.

As discussed in (Stolcke, 1995), the time complexity of Earley’s parser is

O(l3), where l is the length of symbols. It decreases to O(l2) if a grammar

is unambiguous, i.e. the number of distinct derivation trees of a sentence is

1.

2.4. Task Structure Learning

The previous sections only considered cases where the grammars are known

in prior for the recognition of human behaviors. However, it is not sufficient

for a robot to automatically learn a novel task without the capability to

discover the hidden task structure or at least partial task structures from

human demonstrations. Hence, as opposed to manually defining a grammar

to represent a task, there are also several approaches aiming at learning (or

inducing) grammars from observation data.

In early work, Nevill-Manning et al. (Nevill-Manning and Witten, 1997)

presented the SEQUITUR algorithm which can discover hierarchical struc-

tures among symbols. Solan et al. (Solan, Horn, Ruppin, and Edelman,

2005) presented the ADIOS algorithm which induces CFGs and context-

sensitive grammars as well, with some restrictions (e.g. no recursions) using

graphical representations. Stolcke and Omohundro (Stolcke and Omohun-

dro, 1994) presented an SCFG induction technique, which more recently

has been extended by Kitani et al. (Kitani, Yoichi, and Sugimoto, 2008) to

remove task-irrelevant noisy symbols to cope with more realistic environ-

ments. In (Ogale, Karapurkar, and Aloimonos, 2007), Ogale et al. construct

an SCFG grammar based on the frequency of human pose pairs, i.e. bi-

37

grams, considering slightly varying viewpoints. However, it does not have

a generalization step which differs from our approach.

In (Stolcke and Omohundro, 1994), Stolcke and Omohundro proposed

a technique on merging states which generalizes SCFG rules to deal with

unforeseen input with arbitrary lengths, e.g. symbols generated using recur-

sive representations. They introduce two operators, chunking and merging,

which convert an initial naive grammar to a more general one. More re-

cently, Kitani et al. (Kitani, Yoichi, and Sugimoto, 2008) presented a frame-

work of discovering human activities from video sequences using an SCFG

induction technique based on (Stolcke and Omohundro, 1994). By assum-

ing that the noise symbols are not part of the task representation, they try

excluding some symbols from input stream until a grammar with strong reg-

ularity is found based on minimum description length (MDL) principle. Our

approach is different from these, however, in that it takes into account the

uncertainty (or probability) values of input symbols and explicitly searches

for a multiple set of regularities in input symbols. This allows our method

to learn a grammar that reflects the noise term included in the observation,

as well as structure components that form as part of the whole structure.

In the human-robot interaction domain, Nicolescu and Mataric (Nicolescu

and Mataric, 2003) presented a framework which generalizes graph-based

task representations by merging nodes to induce a graph with the longest

common sequences. After learning, they allow their system to interactively

modify the task representation from human vocal commands. The notion of

nodes in their work corresponds to that of our non-terminal symbols which

are essentially state representations. However, as their framework is inher-

ently based on directional acyclic graphs, it cannot induce a representation

containing recursive actions, which is often useful to describe hierarchical

38

human tasks.

2.5. Task Structure for Attention Control

Active localization and detection of task-relevant activities play an impor-

tant role in many robotic systems where the computational resources are

often limited. In situations where the goal is to locate and recognize a set of

critical actions from the limited range of camera view and limited computa-

tional resources, it is critical for a robot to keep actively search for the best

information source. Since this problem can be formulated as an attention

problem, we present a review in this field.

The human ability to actively allocate fixation points in high resolution

imagery of fovea presents several advantages such as invariance to large

translations and reduction of the sensory input size while preserving the

ability to perceive fine details. Additionally, selective attention may al-

low to reduce the representation costs by removing irrelevant input signals

(Larochelle and Hinton, 2010; Ballard, 1991; Suzuki and Floreano, 2008).

These advantages have been adopted by the active vision paradigm (Aloi-

monos, Weiss, and Bandyopadhyay, 1988; Bajcsy, 1988; Borji and Itti, 2013)

and in several applications such as object detection (Vijayanarasimhan,

Jain, and Grauman, 2010; Vogel and Freitas, 2008; Croon and Postma,

2007), object recognition (Denzler and Brown, 2002; Larochelle and Hin-

ton, 2010; Paletta, Fritz, and Seifert, 2005), monitoring during action exe-

cution (Sridharan, Wyatt, and Dearden, 2010), and tracking (Sommerlade

and Reid, 2008; Gould, Arfvidsson, Kaehler, Sapp, Messner, Bradski, Baum-

starck, Chung, and Ng, 2007; Ognibene, Pezzulo, and Baldassarre, 2010).

Due to this reason, active vision systems have been gaining more interest

39

in the robotics and vision communities as their performances are compa-

rable or even surpass conventional passive vision systems (Larochelle and

Hinton, 2010; Andreopoulos and Tsotsos, 2013; Denzler and Brown, 2002).

They have also been applied with success in dynamic context like track-

ing and event recognition (Yu, Fermuller, Teo, Yang, and Aloimonos, 2011;

Ognibene and Demiris, 2013; Oliver and Horvitz, 2005).

Several attention systems have been extensively studied to design bottom-

up, e.g. (Itti, Koch, and Niebur, 1998; Denzler, Zobel, and Niemann, 2003)

and top-down attention systems. Since we are interested in exploiting the

high-level task knowledge to control the attention, we will focus on top-down

attention systems that deal with vision problems. For bottom-up attention

systems, Itti et al. proposed a bio-inspired model (Itti, Koch, and Niebur,

1998) and with an information-theoretic principle (Itti and Baldi, 2005),

where as (Denzler, Zobel, and Niemann, 2003) proposed an automatic cam-

era zoom parameter selection for object tracking based on the uncertainty

outputs of Kalman filters.

Prior works that use information-theoretic principles for detection and

tracking include (Sommerlade and Reid, 2008; Sommerlade and Reid, 2010;

Oliver and Horvitz, 2005; Yu, Fermuller, Teo, Yang, and Aloimonos, 2011).

Although (Sommerlade and Reid, 2008; Sommerlade and Reid, 2010) use

mutual information maximization for multi-target detection and tracking,

the decision is made from object motion information, which does not rely on

a generative activity model. Although (Oliver and Horvitz, 2005) represents

human actions using layered hidden Markov models, they model only un-

structured actions such as phone conversation or face-to-face conversation.

Oliver and Horvitz (Oliver and Horvitz, 2005) propose an activity recog-

nition system using Layered Hidden Markov Models (LHMM) which decides

40

when to extract and process multi-modal sensory information to maximize

the expected value of information. It selects which low-level features to ex-

tract from the camera, e.g. motion density, face and skin color density, to

improve the estimation of the higher-level LHMM models. While it shares

a similar theoretical basis, our approach focuses on recognizing temporally

extended activities, whereas (Oliver and Horvitz, 2005) deals with more

instantaneous actions, e.g. user present/absent, phone conversation, etc.

Furthermore, we consider the recognition of concurrently occurring multi-

ple activities.

Yu et al. (Yu, Fermuller, Teo, Yang, and Aloimonos, 2011) propose a sys-

tem that controls attention to actively recognize the category of a scene

or an activity by sequentially finding the most relevant objects and move-

ments. Their method uses maximization of mutual information to select the

next area to analyze and what object to look for. Their approach aims to

recognize a single short-term activity, like painting or cutting, finding the

related objects and movements in predicted positions.

There are few other works in the literature that use higher level temporal

knowledge to optimize the use of computational resources for the perception

of an event. Chen et al. (Chen, Bilgic, Getoor, and Jacobs, 2011) present

an algorithm to decide which frames of a video should be analyzed with

expensive algorithms to detect motion events and faces in videos. These

expensive observations are initially made at low fixed frame rate, where

additional information is provided by fast detection algorithms. While their

approach is applied at the end of the observation to select which frame to

analyze, our method selects which part in a frame to observe at each time

step, which is an online system.

Ognibene et al. (Ognibene and Demiris, 2013) propose an approach to

41

control online the cameras of a robot to recognize simple events, like reaching

actions of a human partner toward targets of uncertain position. They

model the set of possible events as a mixture of Kalman Filters and use the

maximum information gain to select the camera target between the human

partner or the action target candidates. However, this method differ from

our approach since they rely only on object position information, from which

both motion and event uncertainties are computed.

2.6. Summary

In this chapter, related works in the Learning from Demonstrations (LfD)

paradigm, task representation and recognition, task learning and anticipa-

tion have been reviewed. With the currently available frameworks, however,

it is not possible to realize a robot that learns and represent temporally

structured tasks from human demonstrations efficiently. While positioning

itself within the LfD paradigm, this thesis presents a novel and compact

task representation and recognition framework that are well fit for robot

imitations, as well as automatically learning tasks from human users.

The following chapter starts by discussing efficient representation of hu-

man tasks that could be used as task templates and able to deal with ob-

servation uncertainties.

42

3. Syntactic Approaches to Task

Representation and Recognition

3.1. Introduction

In this chapter, we investigate how the knowledge of tasks can be ex-

ploited to recognize human behaviors with the purpose of better imitation in

Learning from Demonstration (LfD) paradigm through SCFG. This is done

through exploiting the semantic constraints of a task, which results in rec-

ognizing the human’s intention correctly and imitating the correct actions.

It results in a more efficient and natural interaction between a human user

and a robot by minimizing the need to correct the errors made by the robot

while executing actions. It will be also shown how the probabilistic parsing

is used to facilitate this process. We demonstrate our implementation on

a real-world scenario using a humanoid robot and report implementation

issues we had.

3.2. Experiments

This experiment investigates how a robot can recognize human demonstra-

tions and execute demonstrated actions correctly while inferring human’s

intention in case the observation was not fully reliable. For this purpose,

43

a set of hierarchical, problem-independent task templates are given to the

robot in the form of SCFG, which will be later instantiated to problem-

dependent task representations by users that suit their needs, as shown in

Figure 3.1. This process of contextualization is done through SCFG parsing.

The approach presented here shares the same concept as done in (Demiris

and Khadhouri, 2006; Ognibene, Wu, Lee, and Demiris, 2013) where the

authors designed a set of primitive actions which are then used as basic

building blocks, i.e. basic vocabularies, of higher-level tasks. In this experi-

ment, however, more complex topics such as the probabilistic representation

of actions as well as recursive representations of the task structure are also

studied.

B

D

E

C

Primitive Actions Task Templates

A

A B C D

B C A D

D B C

. . .

Observation

Problem-dependent

Task Representations

A1 B1 C1 D1

D3 B3 C3

B4 C4 A4 D4

A2 B2 C2 D2

Figure 3.1.: Building problem-dependent task representations from a pool of
generic task templates. Primitive action detectors are trained
offline to convert the input signals into the time-series terminal
symbols for the SCFG parser. By observing a human demon-
stration and parsing the observation, the system classifies the
demonstration into a corresponding task and assigns the task
property, e.g. 1, 2, ... 4.

We use the hand as a reference cue that describes the observation. Flana-

gan and Johansson (Flanagan and Johansson, 2003) demonstrated in their

experiments that when people watch a series of block-moving tasks, they

44

tend to map the visual representation of the observed action onto a mo-

tor representation of the same action, instead of a purely visual analysis

of the elements independent from actuators. In both our and Flanagan’s

cases, hand is equivalent to the actuator which forms the basis of the visual

representation of objects.

3.2.1. Experiment Design

In this experiment, a human participant teaches a robot how each object

should be organized using a box among three types of organization meth-

ods. The robot observes a human organizing an object using a box, finds

a task template that best matches with the observed demonstration, and

instantiate the task template by associating it with the object used in the

demonstration. Depending on the object type, each object should be treated

differently: while some objects can be dropped into the box, fragile objects

need to be placed safely inside the box, whereas over-sized objects should be

put next to the box. We call these tasks respectively as DROP (drop an ob-

ject into the box), PLACE (place an object inside the box), and NEXTBOX

(place an object next to the box). The human participant decides what kind

of object to be used for each organization task. After demonstrations are

finished, the robot confirms by executing the parsed primitive actions of

each task with the associated object. This process is summarized in Figure

3.2. 1

We conduct our experiments with 10 participants repeating 10 demon-

strations each, where each demonstration consists of three different tasks.

A participant sits on a chair approximately 1.2m distant from the robot

where a table is placed in the middle, although the participant is allowed

1This experiment appears in (Lee and Demiris, 2011).

45

Learn

Primitive Actions

Learn Object

Description

Observe

Demonstration

Detect Primitive

Actions

Parse and

Classify the

Observed Task

Associate the

Classified Task with

the Object Used

Figure 3.2.: The procedure of the experiment.

to sit a little bit closer or farther from the robot if it makes them feel more

comfortable. The participant starts the experiment by arbitrarily select-

ing an object among three different cotton dolls, a ceramic doll, two types

of fruits and a water bottle, and performs a task using the chosen object.

The task order, as well as the choice of an object for each task is fully up

to the demonstrator’s will. There is also no restriction on the demonstra-

tor’s performing speed and movement trajectories as long as they think it

is natural.

After finishing the demonstrations, the participant places 3 objects that

were used in the demonstration in front of the robot, where the robot then

performs the parsed primitive actions with the associated object by pointing

to each object and showing the corresponding task using gestures. The

reason it shows gestures instead of actually manipulating the objects is

because of the grasping limitation issues with the hand of our iCub. The

quantitative analysis of task accuracy as well as qualitative analysis are

given in Section 3.2.2.

Although providing generic task templates in prior might seem heuristic

to some extent, we posit that these task-level representations are crucial

for natural and efficient interactions between humans and robots instead of

46

Figure 3.3.: Software modules used in the experiment.

learning from the scratch.

Task Representation and Parsing

The tasks are defined as shown in Figure 3.4. The non-terminal symbols that

self-represents terminal symbols such as AOBJ and CONTACT are added

to handle repetitive symbols and erroneous symbols. In practice, there are

two important problems to be considered while parsing noisy data:

1) Symbol substitution problem: When an incorrect terminal symbol is

detected in the place of the correct one due to observation noise.

2) Symbol insertion problem: When unexpected symbols are inserted

which lengthens the overall observation. To handle this type of problem,

we need to disregard them if their appearance in the input stream for some

derivation is found to be incompatible. At the same time, we need to pre-

serve the symbol in case it could satisfy other possible derivations.

47

An effective solution is to introduce the “NOISE” symbol. It can be

thought of as a wildcard which can accept any symbol which enables the

parser to allow some out-of-context, unexpected input symbols. It gives a

“tolerance” to observation errors and it is typically set to expand with a

low probability. If the primitive action detectors are unreliable, the overall

parsed likelihood will be low, instead of simply rejecting the input. The

concept of the NOISE symbol is similar to the notion of measurement noise

covariance in Kalman filter, which depends on the reliability of the sensor.

In our case, the probability of entering NOISE rule is set to 0.1 based on

heuristics.

An SCFG parser receives input a sequence of N dimensional vectors where

N is the number of terminals, i.e. the number of primitive action detectors.

It then parses them to find the most likely parse tree that best explains the

observation and outputs the overall likelihood of every grammar.

Visual Tracking

Based on the illustrated scenario, we implement the system as described

in Figure 3.2. It first automatically learns the demonstrator’s skin color

histogram by extracting a patch from the detected demonstrator’s face using

boosted cascade classifiers (Viola and Jones, 2001) and uses it to track the

demonstrator’s hand. It subsequently learns the color histogram of the

object chosen by the demonstrator.

We use hand and object trackers based on the CamShift tracking algo-

rithm implemented in OpenCV library (Bradski, 2000), as they are fast

enough to run in real time and robust to noise if the tracking object colors

are distinctive with the following parameters: The number of histogram

bins=32, minimum color saturation threshold=30, brightness acceptance

48

GDROP:
S → AOBJ CONTACT ABOX LOBJ OGONE [1.0]

GPLACE:
S → AOBJ CONTACT ABOX OGONE HGONE [1.0]

GNEXTBOX:
S → AOBJ CONTACT ABOX LOBJ [1.0]

AOBJ → AOBJ aobj [0.5]
| aobj [0.4]
| NOISE aobj [0.1]

ABOX → ABOX abox [0.5]
| abox [0.4]
| NOISE abox [0.1]

CONTACT → CONTACT contact [0.5]
| contact [0.4]
| NOISE contact [0.1]

LOBJ → LOBJ lobj [0.5]
| lobj [0.4]
| NOISE lobj [0.1]

OGONE → OGONE ogone [0.5]
| ogone [0.4]
| NOISE ogone [0.1]

HGONE → HGONE hgone [0.5]
| hgone [0.4]
| NOISE hgone [0.1]

Naming conventions:
A: approach, L: leave, OBJ: object, BOX: box
HGONE: hand visibility, OGONE: object visibility
CONTACT: hand in contact with an object
NOISE: (See Section 3.2.1)

Figure 3.4.: Task templates used in the experiment. Three different types of
tasks are shown in the top part (GDROP, GPLACE, GNEXTBOX),
followed by non-terminal symbols commonly shared across three
grammars.

49

range=20-240. Hand color histograms are learned from the face patch of

the demonstrator in the beginning, and used throughout the experiment

until all tasks have been performed. Object patches are obtained when a

participant holds an object close enough to the robot, where its distance is

computed from the depth perception using both cameras of iCub. The task

is performed after the object has been learned.

The tracker is initialized using the following procedure:

1) Robot locates the face. Demonstrator holds an object close to the

robot.

2) Obtain the distance of the face dface from the depth image. Binary-

threshold the depth image with threshold dface/2. The result is called mask

image.

3) Apply a mean-shift tracker on the mask image and wait until its center

point Pcenter gets stabilized. Extract a small patch from the color input

image around Pcenter and compute its color histogram. Example results can

be seen in Figure 3.5.

4) Subtract the previously learned skin color histogram from the object

color histogram, bin by bin, to filter out finger colors for better tracking

performance. An example of the final result can be seen in Figure 3.6.

5) Robot nods to notify that it is now ready to track. Demonstrator

places the object on the table and initial search window is set to the table

area. When both hand and object are located, robot starts tracking them.

The method we used allows the system to learn an object in a natural

way from humans with high success rate. It worked as expected on most of

trials although there were occasionally flickering noise on the border area.

In our experiments, wrong object patches were learned only 4 times out of

100 trials. An example object segmentation can be seen in Figure 3.5. We

50

Figure 3.5.: Examples of object segmentation. Images are acquired from
the both eyes of iCub, from which depth map is computed and
blobs closer than a threshold are segmented.

Figure 3.6.: Extracted patches and their color histograms. In histogram
images, x-axis represents the color bin and y-axis represents
the frequency. Finger colors in the patch are suppressed for
better tracking performance.

51

average the positions of each tracker every 3 frames and use them as input

to the primitive action detectors to increase the tracker stability.

Primitive Action Detectors

To recognize these tasks, it is a natural requirement for a system to be able

to recognize the meaningful primitive actions such as a) hand approach or

leave away from an object, b) grasp or release an object, c) move an ob-

ject closer to the box. Before the demonstration, a set of generic-purpose

primitive action detectors are trained offline. The choice of action learning

technique is up to the system designer’s decision, e.g. Hidden Markov Mod-

els (HMM) or Conditional Random Fields (CRF) (Ahad, Tan, Kim, and

Ishikawa, 2008), where in our experiment we employ HMM for the recogni-

tion of dynamic primitive actions. We then define task templates in the form

of SCFG using these primitive actions as terminal symbols. The output of

the primitive action detectors become the input to the SCFG parser.

Primitive action detectors compute the probability of certain types of

events being occurred from the input data in parallel for every time step.

Examples include low-level motions such as hand approaching an object

and object states such as object observable. As long as they provide

the probability or confidence values between 0 and 1, any primitive action

detectors can be used, e.g. aural or tactile event detectors. The output

values represent the probability of terminal symbols. In our case, we use

7 primitive action detectors in total, as described below. We denote H for

hand, O for object, and B for box.

1) ‘H approaching O’, ‘H leaving away from O’, ‘O approaching B’, ‘O

leaving away from B’: They represent the relationships between two entities.

The system learned two general types of HMM, ’Approaching’ and ’Moving

52

away from’ offline using 20 tracked video samples. The input to each HMM

is the sign change of distance between two entities, i.e. {-,+,0}.

2) ‘Object visibility’ and ‘Hand visibility’: These two symbols represent

the observability of objects. Probabilities are obtained by computing the

Bhattacharyya distance between the histogram of the current object track-

ing window and its previously learned histogram.

dist(H1, H2) =

√

1−
1

k

∑

i

√

H1(i)H2(i)

where H(i) = the i-th bin value of a normalized histogram H, and

k =

√

∑

i

H1(i)
∑

i

H2(i)

A color bin size of 32 is used for the experiment. The above function

outputs the histogram distance between 0 and 1, where 0 means two his-

tograms are identical. Ideally, if an object is placed in a box, its visibility

should reach 1.

3) ‘In contact with an object’: This detector is a Gaussian function with

parameters learned from 50 samples of distances between hand and object

center positions while holding an object.

3.2.2. Findings

A total of 100 sets of experiments were performed, excluding 6 sets that were

not usable due to recording problems. Typical single task demonstration

spans between 2 and 6 seconds excluding object learning time. In some

extreme cases, actions were extremely fast (less than 1 second) or slow (more

than 20 seconds). In this experiment, only the performance of recognizing

actions is evaluated, not object recognition, as the latter belongs to another

53

Figure 3.7.: iCub observing the object organization task demonstrated by a
human participant.

Figure 3.8.: iCub performing task by executing parsed primitive actions.

54

problem domain.

Figure 3.9 shows an example output of primitive action detectors and

the parsed result obtained by the stochastic parser. The terminal symbols

in the last line denotes the most probable terminal path reached based on

the overall observation. Figures 3.10 and 3.11 shows the raw scores and

confusion matrix, respectively.

It is worth noting that “aobj” (approach object) symbol in Figure 3.9

has a low likelihood on time steps 2 and 3 (0.0336 and 0.0512, respectively),

which is supposed to have a higher likelihood as the “DROP” task expects to

observe only “aobj” symbols until the object is grasped. However, after the

demonstration is recognized as a “DROP” task, these ambiguous symbols

are parsed correctly as “aobj” to be consistent with the task representation.

Figure 3.10 shows the actual number of trials and errors made in this ex-

periment. “Gt” denotes the ground truth while “Ob” denotes the observed

result. “X” denotes the case where the algorithm fails to find the answer

due to extremely low probabilities. Although rare, it occurs if there are too

many symbols that are inconsistent with all of the defined rules.

Figure 3.11 shows the confusion matrix of the overall result. The accuracy

of recognizing the NEXTBOX tasks is high because it is relatively easier to

recognize this task due to its simple structure. (Defined in Figure 3.4) The

PLACE tasks were recognized as DROP in more than 20% of the trials.

This is mainly due to the ambiguity between two similar grammars.

If the demonstration is done too slowly, the tracker often suffers from

“jitter” effect which increases the error on the output. This problem could

be alleviated by applying Kalman filter on the tracker although we have not

used it in this work. As can be seen on time steps 2 and 3 in Figure 3.9,

even when the hand was approaching the object, “approaching” action was

55

time abox lbox aobj lobj contact ogone hgone
1 0.1174 0.1426 0.6868 0.0532 0.0000 0.1800 0.1985
2 0.5284 0.0136 0.0336 0.4245 0.0000 0.3826 0.1726
3 0.4796 0.0216 0.0512 0.4476 0.0000 0.3627 0.2095
4 0.2098 0.0640 0.6849 0.0413 0.0000 0.3103 0.2053
5 0.1590 0.0681 0.7359 0.0370 0.0000 0.3186 0.3366
6 0.1598 0.0654 0.7477 0.0270 0.0001 0.1427 0.5125
7 0.1208 0.0930 0.7614 0.0248 0.0013 0.2728 0.5846
8 0.3048 0.0277 0.6464 0.0210 1.0000 0.2159 0.6022
9 0.3261 0.0254 0.6296 0.0189 1.0000 0.1977 0.6196
10 0.2905 0.2511 0.1193 0.3392 0.0000 0.8438 0.2689
11 0.3092 0.2697 0.1366 0.2846 0.0000 0.8446 0.2708
12 0.4722 0.4753 0.0328 0.0197 0.0000 0.8549 0.2335
(The actions with the highest likelihood are underlined.)

>> Task recognized as DROP.
>> Parsed actions assuming it was a DROP demonstration:
aobj aobj aobj aobj aobj aobj aobj contact abox lobj ogone ogone

(The corrected actions after parsing are underlined.)

Naming conventions
abox, aobj: Approach box, Approach object
lbox, lobj: Leave box, Leave object
hgone: Hand visibility (1 invisible, 0: visible)
ogone: Object visibility (1 invisible, 0: visible)
contact: Hand in contact with an object

Figure 3.9.: Sample terminal symbols generated by primitive action detec-
tors and the parsed result. The action symbols with the highest
likelihood are underlined. The likelihood values of aobj in time
steps 2 and 3 are unexpected, which are corrected after con-
cluding that the demonstration was a DROP task. For naming
conventions, please refer to Figure 3.4.

56

❛
❛
❛
❛
❛
❛
❛❛

Gt
Ob

N D P X Sum

N 85 7 0 2 94

D 8 76 7 3 94

P 7 22 60 5 94

Sum 100 105 67 10 282

Figure 3.10.: N:Nextbox, D:Drop, P:Place, X:Recognition Failure

❛
❛
❛

❛
❛
❛
❛❛

Gt
Ob

N D P X

N 0.90 0.07 0.00 0.02

D 0.09 0.81 0.07 0.03

P 0.07 0.23 0.64 0.05

Figure 3.11.: Confusion Matrix

detected with low likelihood and “leaving” as high likelihood.

3.3. Summary

This chapter outlines a robot imitation method using SCFG as task tem-

plates. Primitive action detectors are trained and used to generate prob-

abilistic terminal symbols which are used to parse higher-level tasks. The

task properties, selected by a human user, are assigned to a task template,

making it a problem-dependent task representation. The robot performs

the correct task when a similar object is found. Two levels of represen-

tations (task-level and action-level representations) are used to fulfill this

purpose. The task-level representation is used as a semantic constraint that

enforces the ambiguous observed actions to fit into its context. Any low-

level detectors can be designed that best suit the situation which makes

57

this approach scalable. Another advantage of this approach is that human-

readable grammar-like representations are intuitive and easy to understand,

which will allow a wider range of users to take full advantage.

In this experiment, the grammars were hand-crafted, which is common

in many domains as discussed in Section 2.3. However, it is possible to

learn the structure and probabilities of rules although it is commonly re-

garded as intractable (Higuera, 2005). In the following chapter, Chapter 4,

we investigate on the problem of learning grammars from human demon-

strations. Furthermore, we investigate the problem of learning primitive

action detectors in an unsupervised manner in Chapter 5.

One limitation in this experiment is that it is necessary to know when

to start and stop observing. It is possible to work-around this problem by

adding vocal commands or specific gestures made by the demonstrator, but

they are essentially still equivalent to manual manipulation. However, this

topic is out of the scope of this thesis.

On the execution part, it is possible for a robot to run each primitive

action with the same timing as it had learned from the demonstrator. It

is worth noting that by recording the actual timing between actions, it is

possible for the learner to execute the parsed action at the right timing.

Although execution timing was not critical in our example, one could easily

imagine other kinds of tasks where it is more important, e.g. playing musical

instruments.

So far we have discussed on the use of task templates using SCFG to

correctly understand what humans are doing, where the tasks were defined

manually. To make it more useful in the human-robot interaction environ-

ments, it is desirable to make the system learn new tasks automatically

from human users. In the following chapter, the mechanisms of learning

58

novel tasks from human users will be presented, along with several different

experiment scenarios.

59

4. Learning Task Structures from

Demonstrations

4.1. Introduction

Humans are capable of learning novel task representations despite noisy

sensory input by making use of previously acquired contextual knowledge,

since many human activities often share similar underlying structures. For

example, when we observe a hand transferring an object to another place

where a grasping action cannot be seen due to some occlusions, we can still

infer that a grasping action occurred before the object was lifted.

Similarly, in the process of language acquisition, a child learns more com-

plex concepts and represents them by using previously learned vocabular-

ies. Analogously, the structure of a task can be represented using a formal

grammar, where the symbols (or vocabularies) represent the basic action

components, i.e. primitive actions. We are interested in learning reusable

task components to better understand more complicated tasks that share

the same task structures under noisy environments.

The learning of reusable task components is one of the crucial tools in

LfD as it enables a robot to incrementally learn higher-level knowledge from

human teachers using the previously learned knowledge. In this respect,

we present a computational model of the structured human task learning

60

Structure discovery and generalization

Action detection on training sequences

0.8 0.9 0.6 0.7 0.8 0.9 0.7

Action parsing on test sequences

A B A B C D E

Y Z

X Y

A B

Z

C D E

. . .

 0.5 0.7 0.9 0.7 0.8 0.9 0.4 0.8 0.7

Action execution on parsed symbols

A B A B C D EA B

Y{
A B A B D D EB B

{ { {Y Y Z

Figure 4.1.: Overview of the approach to task learning with an example sce-
nario. The input training sequences are converted into streams
of symbols with probability, respectively indicated by circles
and numbers below, from which the original structure is uncov-
ered using grammatical representations. The acquired knowl-
edge is used to better recognize unforeseen, more complex tasks
(test sequences) that share the same structure components.

61

using grammars from demonstrations which can be subsequently used as a

prior knowledge to better recognize more complex tasks that share the same

underlying components with ambiguity. We assume that 1) the system can

detect meaningful primitive actions which are not necessarily noise-free,

and 2) extensive complete data sets are not always available but numerous

examples of smaller component elements could be found.

Compared to the conventional learning techniques, our method has two

distinctive features: 1) Our method actively searches for frequently occur-

ring sub-strings from the input stream that are likely to be meaningful to

discover hierarchical structures of a task. 2) We take into account the uncer-

tainty values of the input symbols computed by primitive action detectors.

Figure 4.1 gives an overview of our approach with an example for illustrative

purpose. This is inspired by Ivanov’s work (Ivanov and Bobick, 2000) where

they augmented the conventional SCFG “parser” by considering the uncer-

tainty values of the input symbols. We augment the conventional SCFG

“induction” technique by considering the uncertainty values of the input

symbols.

4.2. The Discovery of Task Structures and

Parameters

To induce a task grammar from input data, which is a sequence of time-series

terminal symbols, first an initial naive grammar is built as the starting point

by adding all input sequences to the start symbol S. Starting from the initial

grammar, two kinds of operators, Substitute andMerge, are applied until the

grammar is found. The quality of a grammar is measured by the Minimum

Description Length (MDL) principle as used in (Langley and Stromsten,

62

2000; Kitani, Yoichi, and Sugimoto, 2008; Stolcke and Omohundro, 1994),

which will be explained more in Section 4.2.3. In the context of robot

learning of human tasks, the technique of merging repetitive symbols used

in (Nevill-Manning and Witten, 2002) can be reinterpreted as a means of

abstracting meaningful action symbols into hierarchical structures.

There are two operators that abstract and generalize the initial grammar.

The Substitute operator builds hierarchy by replacing a partial sequence of

symbols in the right-hand side of a rule with a new non-terminal symbol.

The new rule is created such that a new non-terminal symbol expands to

these symbols. TheMerge operator generalizes rules by replacing two sym-

bols with the same symbol. Merge(X,Y) into Z means allX and Y symbols

in production rules are replaced with the symbol Z. As a result, it converts

the grammar into the one that can generate (or accept) more symbols than

its predecessor while reducing the total length of the grammar.

The challenging problem here is that there is no obvious way to efficiently

choose which operator to apply. In case of HMMs, choosing the locally

best choice (greedy strategy) generally leads to good results (Stolcke and

Omohundro, 1994). However, it is no longer the case in SCFGs as Substitute

operator often requires several following Merge or Substitute operators to

produce a better grammar. We use a beam-search method to limit the

search space, which considers a number of relatively good grammars in

parallel and stops if certain neighborhood of alternative models has been

searched without producing further improvements. We also take advantage

of the beam search strategy with depth 3, which is reported to find most of

the important grammatical structures of SCFG (Stolcke and Omohundro,

1994).

63

Figure 4.2.: (a) Initial naive grammar. (b) After Substituting AB with X,
AC with Y , and XX with Z. (c) After Merging (X,Y) to X.
(d) After Merging (X,Z) to Z. (e) After Merging (S,Z) to
S. Please note that uncertainties of symbols are not considered
in this example.

4.2.1. Active Substring Discovery

In our framework, each terminal symbol represents a primitive action unit

which contains a probability value, i.e. the symbol detector confidence.

Each non-terminal symbol represents an abstraction of terminal symbols.

To generate a grammar that focuses on patterns with strong regularity, we

build an n-gram-like frequency table which keeps the number of occurrences

of substrings that are subset of input sequences. The score of a rule X → λ

is the occurrence value of λ in the frequency table multiplied by the expected

probability value of λ. Its calculation will be discussed in Section 4.2.2. This

is different the method used in (Kitani, Yoichi, and Sugimoto, 2008) where

they use a similar table to choose the best candidate symbols which has the

maximum compression rate for Substitute operation.

For simplicity, we first consider the case without uncertainty values. In

this case, as defined in (Stolcke and Omohundro, 1994) and (Kitani, Yoichi,

and Sugimoto, 2008), the rule probability is calculated by normalizing rule

64

scores, i.e.:

P (X → λi) =
f(X → λi)

∑

k f(X → λk)
(4.1)

where λi is the i-th rule production of non-terminal X and f(·) denotes the

frequency of the string. P (X → λi) satisfies the following property:

∑

i

P (X → λi) = 1 (4.2)

In our method, as we keep counts for all possible sub-patterns from input

samples, the probability of each rule is always larger than zero even if there

was no input sequence that exactly matches the discovered sub-pattern.

This has an effect of stronger “inductive leap”, i.e. higher tendency to

generalize from a relatively small number of input samples.

To illustrate, suppose that we want to learn a task with repetitions

(ab)n from the 6 correct samples of “abababab” and 1 erroneous sample of

“abacabab”. The initial naive grammar (Figure 4.2(a)) simply contains all

input sequences. We use parentheses (·) and brackets [·] to represent counts

and probability values, respectively, e.g. S → ABC (20) [0.90] represents

the rule score of 20 and rule probability 0.90. We now apply a Substitute

(Figure 4.2(b)) and Merge operators (Figure 4.2(c)-(e)) introduced in (Stol-

cke and Omohundro, 1994) with rule scores obtained from our frequency

table. Figure 4.2(a) shows an initial naive grammar. After Substituting

AB with X, AC with Y , and XX with Z, we obtain the grammar in Fig-

ure 4.2(b). After Merging (X,Y) to X, Merging (X,Z) to Z, and finally

Merging (S,Z) to S, we obtain the grammar in Figure 4.2(e).

We have now obtained a more generalized grammar that favors (yielding

higher probability when parsed) input sequences mostly containing AB’s.

It is worth noting that the rule probability of erroneous symbol AC is still

65

in the grammar but with very low probability. As a result, this grammar

“allows” occasional errors as it still accepts noise cases with low probability

instead of simply rejecting. This “soft” classification is one of the advantages

of SCFGs, when compared to non-stochastic CFGs which do not have rule

probability values.

In practice, it is often useful to limit the maximum length of symbols

to be considered in the frequency table to avoid generating an exhaustive

list of symbols to increase the speed. This is a reasonable assumption as

human activities often involve repetitive action components(Zhou, Torre,

and Hodgins, 2008). Also, considering only the n-most frequent substring

patterns is an effective alternative. Since the search space of the possible

grammars is not small, a beam search strategy is applied as in (Stolcke and

Omohundro, 1994) which considers a number of relatively good grammars in

parallel and stops if a certain neighborhood of alternative grammar models

has been searched without producing further improvements.

4.2.2. Considering Input Samples with Uncertainty

So far, we have only considered a case where input symbols are non-probabilistic,

i.e. terminals (a, b, c...) are not assigned with probability values. However,

since we assume that primitive action detectors could also provide uncer-

tainty (confidence) values as output, it is beneficial to exploit this informa-

tion. If there is a higher rate of noise, it is more likely that the certainty of a

symbol is lower. Based on this assumption, we first compute the probability

of a sub-pattern λ = s1s2s3...sl of length l from input, as

P (λ) = (
l

∏

i=1

P (si))
1

l (4.3)

66

The term 1
l
is used to scale the likelihood, since the probability is in overall

multiplied by the number of symbols at the end of the parsing. The expected

value of λ, µ(λ), is obtained by averaging all occurrences of λ = {λ1, λ2...}

in the input, i.e.:

µ(λ) =
1

n

n
∑

k=1

P (λk) (4.4)

Here, {λ1, λ2...} are the same strings with possibly different probabilities,

since each λi was sampled at different times by the detector. In prior works

(Stolcke and Omohundro, 1994; Kitani, Yoichi, and Sugimoto, 2008), µ(λ) is

computed directly by the occurrences of λ, whereas in our case, we take into

account the confidence values of detectors. Thus, we modify the equation

(4.1) as

P (X → λi) =
f(X → λi)µ(λi)

∑

k f(X → λk)µ(λk)
(4.5)

where the subscript i denotes the i-th rule of X. We use this equation

throughout our experiments. The above rule probability is used to compute

the maximum likelihood in our Bayesian framework to update the MDL

score (Equation 4.9).

In our method, we define the model prior probability

P (M) = P (MS ,Mθ) = P (MS)P (Mθ|MS) (4.6)

where P (MS) and P (Mθ|MS) respectively denote the structure prior and

the parameter prior of a grammar. P (MS) is defined as Poisson distribution

with mean (average production length) 3.0, as in (Stolcke and Omohundro,

1994; Kitani, Yoichi, and Sugimoto, 2008). The higher mean value means

that the expected length of a production rule is larger.

In the literature, it is a common choice to model the parameter prior

67

P (Mθ|MS) as a symmetric Dirichlet distribution for grammar induction, e.g.

(Sakakibara, Brown, Hughey, Mian, Sjölander, Underwood, and Haussler,

1994; Shan, McKay, Baxter, Abbass, Essam, and Nguyen, 2004; Stolcke

and Omohundro, 1994; Kitani, Yoichi, and Sugimoto, 2008). This is because

Dirichlet prior is a conjugate prior, which allows the posterior distribution

to be a simple product of the prior and the likelihood. The parameter prior

is the product of Dirichlet distributions, each of which corresponding to the

prior distribution over possible n expansions of a single non-terminal X:

PX(Mθ|MS) =
1

β(α1, ..., αn)

n
∏

i=1

θi
αi−1, (4.7)

where β, the normalizing factor, is a multinomial Beta function with pa-

rameters αi, and θi is a rule prior which is uniformly distributed. Since we

have no prior knowledge about the distribution of the parameters, αi = αj

∀i, j and
∑n

i αi = 1.

Here, we briefly discuss about the effect of the values of α in a symmet-

ric Dirichlet distribution, where αi = αj ∀i, j, while computing the MAP

estimates. If αi > 1, the resulting grammar tends to have rule probabilities

that are more equally likely as αi gets larger, even if the rule probabili-

ties computed in Equation 4.5 are biased. If αi < 1, the rule probabilities

tend to spread out towards extremes (0 or 1), where this tendency becomes

stronger as αi reaches towards zero (αi > 0). Lastly, if αi = 1, there is no

prior on the distribution of rule probabilities, thus depending only on the

rule probabilities computed by Equation 4.5.

We apply a pruning process as in (Stolcke and Omohundro, 1994) to

speed up the induction and filter out non-critical production rules having

probabilities lower than a certain threshold τ , as they are often accidentally

68

created due to noise. If the removal of a rule decreases the description

length of model prior but increases that of data likelihood in relatively small

amount, it will lead to a better (lower) MDL score. We set τ = 0.01 in all of

our experiments. However, we later experimentally show the pruning effect

in Section 4.6, by varying the threshold value.

4.2.3. Measuring the Quality of a Grammar

Our goal is to find a grammar that is sufficiently simple yet expressive as

pointed out by Langley et al.(Langley and Stromsten, 2000). In his work, a

minimum-description length (MDL) principle is used to decide whether or

not to merge states.

We denote P (M) as a priori model probability, where M is a grammar

model that includes structure priors P (MS) and parameter priors P (Mθ)

that do not consider the input data D, where P (D|M) denotes a data like-

lihood:

P (M) = P (MS ,Mθ) = P (MS)P (Mθ|MS) (4.8)

where P (MS) specifies the structure prior, i.e. the length of a grammar, and

P (Mθ) specifies the parameter prior, i.e. rule probabilities. Maximizing the

joint probability P (M,D)

P (M,D) = P (M)P (D|M) (4.9)

is equivalent to minimizing −logP (M,D)

− logP (M,D) = −logP (M)− logP (D|M) (4.10)

where −logP (M) represents the description length of the model under the

69

given prior distribution and −logP (D|M) represents the description of the

data D given a model M. The sum of two negative log values naturally

corresponds to the total description length of the model and data. Thus,

the goal can be rephrased as minimizing −logP (M,D).

Although one can define the prior distribution of P (MS) in a simple form

such as e−l, where l = number of bits required to encode the grammar, it

is far from being a natural distribution for grammars. Thus, a Poisson dis-

tribution is commonly used with a mean of 3.0 (average production length)

as in (Stolcke and Omohundro, 1994) and (Kitani, Yoichi, and Sugimoto,

2008).

The data likelihood P (D|M) is computed using Viterbi parsing, which is

commonly used in HMMs. However, unlike (Stolcke and Omohundro, 1994)

and (Kitani, Yoichi, and Sugimoto, 2008), to handle the uncertainty values

of the input symbols, the method of computing the likelihood needs to be

modified. To cope with this situation, we use the SCFG parsing algorithm

with uncertainty input introduced in (Ivanov and Bobick, 2000) to compute

data likelihood.

The following figure (Figure 4.3) summarizes the whole process.

4.3. Bag-of-Balls Experiment

4.3.1. Experiment Design

In this experiment, we assume a scenario where an arbitrary number of balls

is put into a bag (denoted as a), moved to another place (denoted as b), and

the same number of balls is taken out later (denoted as c), which can be

represented in the form anbcn. The samples are randomly generated from

this model grammar up to the length of 9 (n=4).

70

1. Run symbol detectors on the input data to obtain action symbols,
λ = λ1, λ2, ..., λn.

2. Compute the substring frequency table (n-gram table) of the
input symbols.

3. Initialize an empty search tree.
4. Construct a naive grammar and set it as the root node,
S → λ [1.0]

5. Apply operators defined in Section 4.2.1 and recompute rule
probabilities.

6. Adjust rule probabilities according to symbol likelihoods as
described in Section 4.2.2.

7. Add the newly acquired grammar as a child node and compute
its MDL score.

8. Repeat steps 5-7 until no further improvement is found in terms
of MDL score.

Figure 4.3.: Learning summary

To test over noise sensitiveness, we add Insertion and Substitution errors.

An Insertion error inserts a random symbol into the input and a Substitu-

tion error randomly replaces a symbol with any incorrect one. We test with

the noise probability in the range of [0%, 20%] with 1% step, totaling in 21

noise conditions. A noise probability of 10% means that either a Substitution

or Insertion error has occurred in approximately 10% of the input symbols.

Each noise condition is conducted 10 times with randomly generated dataset

and its mean MDL score is computed, resulting in 210 experiments in to-

tal. We compare the results using our method and two previously reviewed

methods proposed by Kitani (Kitani, Yoichi, and Sugimoto, 2008) and Stol-

cke (Stolcke and Omohundro, 1994). We also compute the MDL score ratio

between the learned grammar and the hand-made model grammar.

The confidence values of terminal symbols are given such that the correct

symbol is assigned with the probability computed from Gaussian distribu-

71

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Noise Level

D
es

cr
ip

ti
o
n
 L

en
g
th

 R
at

io

Proposed

Kitani et al.

Stolcke et al.

Figure 4.4.: Description length ratios of grammars generated by different
methods. The lower score indicates that the grammar is more
compact yet maintains sufficient expressive power.

 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0

50

100

150

200

250

300

350

400

450

500

Noise Level

M
D

L
 S

co
re

s

Stolcke et al.

Kitani et al.

Proposed

Model

Figure 4.5.: Actual MDL scores for each method compared with the model
grammar. MDL scores are averaged over 10 trials for each noise
condition. The graph is shown with a 2% step for better view.
A lower score indicates that the grammar is more compact yet
reasonably expressive. How these scores affect the performance
in the real world will be discussed in Sections 4.4 and 4.5.

72

 (a)

SY (8.00)

 | AYC (3.00)

 | AABAC (1.00)

 | AACACCCC (1.00)

 | AAYCC (1.00)

 | CY (1.00)

YAABCC (8.00)

 (b)

SAABCC (6.99)

 | ASC (2.66)

 | AASCC (0.93)

 | CS (0.64)

 | AABAC (0.46)

[0.53]

[0.20]

[0.07]

[0.07]

[0.07]

[0.07]

[1.00]

[0.60]

[0.23]

[0.08]

[0.05]

[0.04]

Figure 4.6.: The obtained grammars using the method in (Kitani, Yoichi,
and Sugimoto, 2008)(a) and the proposed method(b) from data
with noise probability 0.08.

tion with µ = 0.85, σ = 0.1 and wrong symbol with µ = 0.15, σ = 0.1. We

set unrelated symbol d to be included as noise, as in (Kitani, Yoichi, and

Sugimoto, 2008).

The description length ratio of a grammar is the ratio of MDL scores

between learned grammar and the model grammar, where the lower score

indicates that the grammar is more compact yet maintains enough expres-

sive power. Figure 4.4 shows description length ratios over various noise

conditions, where in most cases the grammars generated by our proposed

method have the lowest description length ratio implying that they are well-

balanced between compactness and expressiveness. We prune production

rules that are less than 1%, which are generally obtained due to noise.

4.3.2. Findings

As qualitative analysis, we now examine some of the obtained grammars. In

the case with noise probability 0.08, a grammar obtained using the method

proposed in (Kitani, Yoichi, and Sugimoto, 2008) is shown in Figure 4.6(a).

Under this noise condition, the mean MDL score was 330.38 and the stan-

dard deviation was 39.72. A grammar obtained using our proposed method

under the same noise condition with the same dataset is shown in Figure

73

4.6(b). The mean MDL score was 300.62 and the standard deviation was

48.27. The average MDL scores can be seen in Figure 4.5.

It is worth noting that the rule scores in the grammar generated using

our method reflect the uncertainty values of input symbols. As a result,

in Figure 4.6(b) the erroneous sequence AABAC (the last rule) has a rule

score of 0.46 in contrast to 1.00 in Figure 4.6(a), as the symbol C had lower

probability (higher uncertainty) due to noise. In the second grammar, since

rules containing noise quickly converged to very low probability (less than

0.01) and pruned, the rule probability for the correct cases, e.g. S →

AABCC has a relatively higher probability value. This will result in higher

likelihood when parsed on new samples within the same class.

In the following sections, we show how MDL scores actually reflect the

performance in several real world robot scenarios.

4.4. The Towers of Hanoi Experiment

The aim of this experiment is to make a robot correctly recognize and imi-

tate the human task sequences for successfully executing a task. However,

instead of simply imitating, we require that the robot should deal with

noise using the previously obtained knowledge so that it can perform the

intended task sequence correctly even when the perceived actions are par-

tially incorrect. Furthermore, we are interested in challenging tasks that

include recursion which can be demonstrated with various lengths of task

sequences. We choose the Towers of Hanoi problem as it satisfies the above

requirements. As discussed in Section 4.1, we tackle the problem from the

“what to imitate” perspective, i.e. at the symbolic level rather than trajec-

tory level. Thus, it is worth mentioning that in this experiment we represent

74

each action symbol as an action goal rather than its trajectory.

4.4.1. Experiment Design

We evaluate our method on real-world data obtained from the demonstra-

tions of 5 human participants. In the training phase, a human demonstrator

shows solving the puzzle using 2 and 3 disks, respectively, repeating each

task 3 times. The robot then learns a task grammar from each demonstra-

tor using techniques explained in Section 4.2. Thus, 5 task grammars are

learned in total.

In testing phase, a human demonstrator solves the puzzle using 4 disks, re-

peating 3 times. The trained task grammar is used to parse the observation,

which generates a sequence of primitive actions to execute. A reproduction

is considered a success only if the robot solves the puzzle by correctly ex-

ecuting the complete sequence of primitive actions. Each task grammar is

used to parse each demonstration, which results in 15 tests for each of our 5

participants, or 75 in total. We use iCub (Metta, Sandini, Vernon, Natale,

and Nori, 2008), a humanoid robot with 53 degree of freedom, as our testing

platform. Figure 4.7(c) shows a sample image of iCub executing the parsed

primitive actions.

We experiment under two types of noise conditions: the low-noise (indoor

lighting) and high-noise (direct sunlight) conditions. That is, a) train on

the low-noise condition and test on both low- and high-noise conditions,

respectively, and b) train on the high-noise condition and test on both con-

ditions. All samples of the high-noise data set were captured in the same

day for consistency. Example samples can be seen in Figure 4.7.

Since we are interested in high-level task representations, we assume that

the system can detect minimal level of meaningful primitive actions and

75

Figure 4.7.: (a-b) A sample tracking screen while a human participant is
solving the puzzle with 4 disks. Compared to the low-noise
condition (a), the high-noise condition (b) shows overexposed
spots which often makes the tracker unstable. The tracker im-
mediately resets the position if lost by searching the desired
blob from the entire region of the image. (c) shows iCub per-
forming parsed primitive actions. A demo video is available at:
http://www.youtube.com/watch?v=S99ViThK050

generate symbols. Similar to (Ivanov and Bobick, 2000), we define these

primitive action detectors using HMMs where each model corresponds to

an action symbol with its output value representing the symbol’s certainty,

or probability value. The input to these detectors are the currently moving

object’s quantized direction, and distances between the object and towers.

In this experiment, our system generates 5 types of primitive action sym-

bols during an observation as detailed in Figure 4.8. The reason we define

symbols like Disk moved “between” A and B instead of Disk moved “from”

A to B is because they are sufficient to represent the task structure with-

out generating an excessive number of symbols. As the rule of the puzzle

enforces that only a smaller disk shall be placed on top of the bigger disk,

there is always only a single possibility of moving a disk between two towers.

This is a fair assumption as this rule is always given in prior, not learned.

Thus, in terms of executing symbols A, B, and C, we can expect that the

robot will make the correct move. During the training phase, the symbol

with the highest certainty is fed into the input of the grammar building

76

Symbol Actions

L Lift a disk from the tower
D Drop a disk into the tower
A Move between tower 1 and tower 2
B Move between tower 1 and tower 3
C Move between tower 2 and tower 3

Figure 4.8.: Primitive actions defined in Towers of Hanoi experiment. The
system is equipped with these 5 primitive action detectors which
generates symbol probability during observation.

algorithm.

If we denote action sequences LAD asX, LBD as Y , and LCD as Z, then

symbols X, Y , and Z represent pick-and-place action sequences. The op-

timal solution of the puzzle can be represented as ((LAD)(LBD)(LCD))n,

or (XY Z)n, meaning “Perform (XY Z) recursively until the problem is

solved.”

Object trackers are implemented using standard CamShift algorithm pro-

vided in (Bradski, 2000), with additional Kalman filtering to improve sta-

bility. A sample tracking screen is shown in Figure 4.7; as it depends on

the color information of blobs, it often produces errors due to lighting con-

ditions.

We use the standard Cartesian control library developed by Pattacini

et al. (Pattacini, Nori, Natale, Metta, and Sandini, 2010) and a grasp

trajectory planning method reported in (Su, Wu, Lee, Du, and Demiris,

2012) to execute the Tower of Hanoi task on iCub. We use this method to

effectively deal with position errors of disks, which internally uses a grasp

simulator to plan the optimal trajectory of hand joints for every disk. The

advantage of this method is that it can cope with arbitrary shapes and sizes

of disks.

77

Figure 4.9.: Success rates using our method, base method and the pure im-
itation. Scenarios LL and LH: Train on the low-noise condition
and test on low- and high-noise conditions, respectively. Sce-
narios HL and HH: Train on high-noise condition and test on
low- and high-noise conditions, respectively. The fact that a sin-
gle mistake while parsing a long test sequence causes a failure
makes this problem non-trivial.

4.4.2. Findings

As explained in the last section, the objective here is to learn a high-level

task representation from a few short sequences of demonstrations that can

be used to better parse unforeseen, possibly more complicated tasks that

share of same task components. We report the performances in 4 scenarios

(LL, LH, HL, HH) in Figure 4.9.

In scenarios LL and LH, models are both trained from demonstrations of

2 and 3 disks under the low-noise condition, then they are tested on demon-

strations of 4 disks on the low-noise and high-noise conditions, respectively.

Similarly, scenarios HL and HH are trained from the high-noise condition

and tested on both noise conditions.

We compare with the base method (Stolcke and Omohundro, 1994) and

the pure imitation method which simply follows what has been observed

78

Scenario Method Success Avg.MDL Scenario Method Success Avg.MDL

LL
Proposed 55 284.63

LH
Proposed 37 286.92

Base 43 390.28 Base 31 393.26
Pure Imi. 25 N/A Pure Imi. 15 N/A

HL
Proposed 49 306.25

HH
Proposed 30 306.66

Base 11 469.32 Base 9 469.46
Pure Imi. 25 N/A Pure Imi. 15 N/A

Figure 4.10.: Detailed results with average MDL scores for comparison.
Each case is tested on 75 sequences. MDL score is not avail-
able for the pure imitation as it does not rely on any learned
model. It is worth noting that lower MDL scores generally
lead to higher success rates.

Demonstrations using 4 disks Low-
noise

High-
noise

Total

Total number of sequences 15 15 30
Sequences containing wrong symbol 10 12 22
Average number of error symbols per trial 1.13 2.20 1.67

Figure 4.11.: Error statistics of demonstrations using 4 disks on each noise
condition. Note that even in the low-noise condition, there are
only 5 trials observed with all correct symbols, which means
that in most cases the pure imitation will not lead to the de-
sired goal state. Each testing sequence is composed of 45 prim-
itive action symbols, which makes this problem non-trivial as
only a single mistake will make it fail to achieve the goal.

79

from demonstrations. In any case, if the system makes any single mistake

while recognizing human demonstration due to either wrong tracking or

wrong symbol interpretation, it is marked as failed. This makes our scenar-

ios non-trivial as each testing sequence is composed of 45 symbols. Please

refer to Figure 4.11 to see error statistics. We do not use the method pro-

posed by Kitani et al(Kitani, Yoichi, and Sugimoto, 2008) in this experiment

as all generated symbols are always related to the task.

As can be seen in Figure 4.9, it is important to note that there is a no-

ticeable difference on the base method between scenarios LL and HL, and

between LH and HH. As scenarios HL and HH are trained from noisy train-

ing data, the task representations could be easily corrupted. This could even

lead to parse the correct symbol into wrong symbol which results in worse

performance than purely imitating observed actions, whereas our method

at least performs better than the pure imitation.

Figure 4.12 shows a test example with 4 disks, where some of the am-

biguous observations are clarified using the learned grammars at the parsing

time. Figure 4.12a shows where the block is being dropped (symbol D). Due

to tracker error, the certainty of symbol A was higher than symbol D. It

was disambiguated and corrected at the parsing time, as shown in Figure

4.12b.

It is also worth noting that from Figure 4.10, we can confirm that lower

MDL score leads to generally better representations. A model with the

highest MDL score 469.46 (scenario HH, Base method) had the poorest

performance, where a model with the lowest MDL score 284.63 (scenario

LL, Proposed method) exhibited the best performance. As expected, models

learned in the high-noise condition tend to have lengthier descriptions, which

increases prior score. Relatively high MDL scores generally mean that they

80

(a) A participant demonstrates solving the puzzle using 4 disks,
where the block is being dropped (symbol D). Due to tracker
error, the certainty of symbol A was higher than D.

(b) Symbols that are inconsistent with the learned grammar are
corrected at the parsing time.

Figure 4.12.: A test experiment scenario where 4 disks are used, requiring
45 actions to be correctly executed to reach the goal.

81

Figure 4.13.: (a) A sample grammar that captured the meaningful task com-
ponents such as LAD, LBD, and LCD, which can be used
to enforce the observation to be consistent with the demon-
strator’s intended actions. CADSS and SLBAS come from
occasional noisy examples and hence they are assigned very
probabilities. (b) A grammar learned from an ideal (noise-
free) dataset. (c) A grammar learned from the same dataset
of (a), but with a pruning threshold of 0.15. Please see Section
4.6 for more detailed analysis on pruning effects.

are too specific, failing to capture the recursiveness nature of the task.

The example grammar constructed using the proposed method (Figure

4.13(a)) shows that it captured meaningful task components: LAD, LBD,

and LCD. (lines 1-3) Task components CADSS and SLBAS come from

occasional noisy examples and hence they are assigned very probabilities.

Although there are intermittent error symbols in input sequences, the under-

lying structures of task components are captured effectively. The knowledge

of these underlying structures allow to filter out contextually inconsistent

observations. For example, the learned task component LAD allows the

action DROP (D) to be expected when MOVE BETWEEN (A) action is

observed, even if DROP action was missed or misinterpreted. The last line

of the grammar rules shows that it also captured the recursiveness nature

of the task.

Although each model is constructed only from 6 sample sequences, it

82

successfully captured these core components due to active substring search-

ing explained in Section 4.2.1. Figure 4.13(b) shows an example grammar

constructed from data that contains no noise at all. Most of the experi-

ments, however, include noise symbols in the middle of an input sequence

which hinders the discovery of the full meaningful task component such as

LADLBDLCD in Figure 4.13(b), line 1. Nevertheless, grammars discov-

ered like the one in Figure 4.13(a) worked reasonably well to support parsing

the same task with more complicated sequences.

It is worth mentioning that although human participants were given the

optimal solution in prior, 75% of the participants made one or more mistakes

due to confusion while solving when the number of disks was 4.

4.5. The Dance Imitation Experiment

4.5.1. Experiment Design

In this experiment, we define 3 types of dance demonstrations. The goal of

this experiment is to learn the generalized representation of human dance

movements, which is utilized to recognize more complex movements. Each

dance sequence is composed of a subset of predefined motion primitives, i.e.

dance symbols.

The input to the system are time-series 54-dimensional angular values

of 18 human joints, captured using an OptiTrack 8-camera motion capture

system. Temporal segmentation is applied (Section 4.5.1), where each seg-

ment is mapped to one of 9 primitive dance symbols. To map segments to

symbols, we need to train detectors (Section 4.5.1). After obtaining detec-

tors, we can now convert a video stream into a sequence of symbols which is

fed into our SCFG learning framework. Finally, the robot performs dance

83

Figure 4.14.: 9 motion primitives used in this experiment and a demonstra-
tion example. Please see the following video for better visual-
ization: http://www.youtube.com/watch?v=S99ViThK050.

84

Grammar (CD)n(EF)n (ABE)n HnGIn

Train set n=1,2 n=1,2,3 n=1,2,3
Test set n=3,4 n=4,5 n=4,5

Figure 4.15.: 3 types of dance representations used in the experiment.
Please see Figure 4.14 for reference. In training set, there
are 5 trials for each value of n (sequence length), which re-
sults in 40 dance demonstrations (225 input symbols). The
testing set has 6 trials for each n, which results in 36 dance
demonstrations (450 input symbols).

primitives by executing the parsed symbols. We map the human joints into

iCub’s joints and generalize the trajectories of 9 motion primitives from

multiple demonstrations. (Section 4.5.1)

The dance grammars used to generate data samples in this experiment

are: 1) (CD)n(EF)n, 2) (ABE)n, and 3) (HnGIn). We describe the sce-

nario settings in Figure 4.15.

Temporal Segmentation

We modify the temporal segmentation method proposed by Fod et al. (Fod,

Mataric, and Jenkins, 2002) which segments human motions at zero-crossing

points of the squared sum of joint velocities. Similar to (Fod, Mataric, and

Jenkins, 2002), where they selected a subset of joints, we select four sets of

human joints (usually between 3 and 5 out of 18) that move significantly in

Joints Set Involved Human Joints Motion Primitives

Left arm Chest, Left shoulder & Elbow A, D, I
Right arm Chest, Right shoulder & Elbow B, C, H
Two arms Chest, Left and Right shoulder & Elbow G
Head Chest, Neck, Head E, F

Figure 4.16.: The informative human joints chosen to be used for calculating
the ASV and ASD values. As these joints are often overlapped
across multiple motion primitives, the number of the joint sets
are reduced to four.

85

every motion primitive, as shown in Figure 4.16. Furthermore, we compute

two types of features for segmentation: the average of squares of joint ve-

locity (ASV, Eq. 4.11) and the average of squares of joint distance to the

initial posture of the dance sequence (ASD, Eq. 4.12).

ASV (S, ω) =
∑

i∈S

ω2
i /Card(S) (4.11)

ASD(S, θ, θr) =
∑

i∈S

(θi − θri)
2/Card(S) (4.12)

where S is the set of joints as defined in Figure 4.16, ωi is the velocity of

joint i, Card(S) is the cardinal number of S, θi is the position of joint i,

and θr is the vector of joints position of the reference posture.

For each time step, we choose S with the largest ASV value for segmenta-

tion. Then we find the zero crossings of the ASV where ASD value is lower

than a threshold. In our case, the threshold is automatically computed from

data by clustering ASD values into two groups and taking the mean of two

cluster centers. We use K-means (K=2) for clustering. An example is shown

in Figure 4.17.

Training of Symbol Detectors

After obtaining video segments, we first compute the angular velocity of

joints by computing the frame differences of 54-dimensional joint data, fol-

lowed by taking Bag-of-Words (BoW) approach combined with one-vs-all

SVM. We cluster the joint velocity data into K clusters using K-means

(K=50), and use them to compute the histogram of every segment. One-vs-

all multiclass SVM classifiers are trained from these histograms for 9 differ-

ent symbols using radial basis function (RBF) kernel, similar to (Barnachon,

86

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time step

A
S

V
 (

(d
eg

/s
)2

)

(a) ASV and segmentation of dance CDCDEFEF

Head Set

Left Arm Set

Right Arm Set

Two Arms Set

Our Result

Ground Truth

0 200 400 600 800 1000
0

2

4

6

8

10

12

Time step

A
S

D
 (

d
eg

2
)

(b) ASD and segmentation of dance CDCDEFEF

Head Set

Left Arm Set

Right Arm Set

Two Arms Set

Our Result

Ground Truth

Figure 4.17.: The ASV(a) and ASD(b) of the movement sequence: the used
joints set for each time step is marked on the bottom using cor-
responding color. The zero-crossings of ASV with sufficiently
low ASD value are chosen as the segmentation points.

87

Bouakaz, Boufama, and Guillou, 2014). We use LibSVM library (Chang and

Lin, 2011) to train and test SVMs. After running a grid search optimization,

we obtained RBF kernel parameters of C = 0.5, γ = 0.0078125.

Trajectory Generalization

After classifying each segmentation, we use the segments that belong to

the same class as the training set to generalize the trajectories for iCub.

Dynamic TimeWarping (Chiu, Chao, Wu, Yang, and Lin, 2004) is applied to

demonstration sets to gain trajectories for each motion primitive, which are

then mapped to the corresponding joints of iCub. The joint configurations

of iCub’s chest and head are the same as those of human, which makes

it possible to directly assign the angles of these joints to iCub. But the

configurations of iCub’s arm and the human arm are different, so we map

these joint angles to the iCub by minimizing the error of the directional

vectors of the upper and the lower arm between the human and iCub under

the constrains of the joint limits of iCub’s arm. Now iCub is ready to execute

the sequence of dance symbols. Figure 4.18 shows the representative frames

of one of 3 dance sequences.

4.5.2. Findings

Figure 4.19 shows the performance in 4 scenarios, similar to the Towers

of Hanoi experiment in Section 4.4. We define the low-noise condition (L)

when the ground-truth segmentation is used, and the high-noise condition

(H) when automatic segmentation described in Section 4.5.1 is used. The

first letter corresponds to the training condition, whereas the second letter

corresponds to the testing condition. For example, “LH” means the gram-

mar was learned using manually segmented sequences from the training

88

Figure 4.18.: iCub performing parsed primitive actions. Each figure from
the left to right respectively represents primitive actions C, D,
E, and F. The video containing full movements can be seen
on: http://www.youtube.com/watch?v=S99ViThK050.

dataset, and parsed on automatically segmented sequences from the test-

ing dataset. Since there are a significant number of input error symbols,

we also denote the actual number of symbols that are recognized correctly.

In the pure imitation (no grammar) case, the number of correct symbols

are equivalent to the number of correctly recognized symbols by symbol

detectors.

Figure 4.20 shows the learned grammars of 3 dance representations from

the demonstrations using automatically segmented sequences as training

dataset computed by the method described in Section 4.5.1. This training

dataset is marked as the high-noise case (H) since the higher error in the

segmentation leads to a higher error rate on the symbol detection, which af-

fects on grammar learning. Thus, these grammars are used to test scenarios

“HL” and “HH”.

Figure 4.21 shows the learned grammars using manually segmented se-

quences as training dataset. It is notable that only the segmentation part

was done manually. The training and testing of symbol detectors and gram-

89

Scenario Method Correct Success Avg.MDL

LL
Proposed 450 36 400.09
Base 450 36 408.70
Pure Imi. 437 30 N/A

LH
Proposed 450 35 413.63
Base 450 35 422.26
Pure Imi. 347 11 N/A

HL
Proposed 450 36 450.99
Base 414 24 464.93
Pure Imi. 437 30 N/A

HH
Proposed 424 30 464.27
Base 414 24 476.12
Pure Imi. 347 11 N/A

Figure 4.19.: Detailed results with average MDL scores for comparison.
Each scenario has 36 sequences, and the total number of sym-
bols per scenario is 450. “Correct” column shows the number
of correctly recognized symbols after parsing, where in pure
imitation case it is equivalent to the number of action detec-
tor errors. MDL score is not available for the pure imitation
as it does not rely on any learned model. It can be seen that
the lower MDL scores generally lead to higher success rates.

mar learning parts are all done in the same way as in the automatically

segmented dataset. These grammars are used to test scenarios “LL” and

“LH”.

In Figure 4.19 (HL scenario), it can be seen that the pure imitation

has a better performance than using grammars obtained using the base-

line method. This is because of the high level of noise in the input hinders

building a correct representation in the grammar. As a result, it sometimes

leads to an adverse effect where the correct input symbols are identified

as wrong. Our proposed method is less likely to suffer from this problem

because the uncertainty values of input symbols and substring frequencies

are considered.

The grammars shown in Figures 4.21(a) and (b), Figures 4.20(b) and (c)

90

SgEF
 | SS
 | CD
 | SSSS
 | CF
 | CES
 | CHS
 | SFE
 | SCIHFS

SgABE

 | SS

 | SAAB

[0.592059]

[0.390003]

[0.017939]

[0.293200]
[0.287079]
[0.198005]
[0.085637]
[0.044922]
[0.028048]
[0.024241]
[0.019778]
[0.019089]

(a) (b) (c)

SgHGI

 | HSI

 | HESII

 | HSG

[0.523234]

[0.415843]

[0.034387]

[0.026536]

Figure 4.20.: Acquired grammars from automatically segmented dataset us-
ing the method described in Section 4.5.1. The error in the
segmentation leads to a higher error rate on detectors, which
is regarded as the high-noise scenario.

SgABE

 | SS

[0.598758]

[0.401242]

(a) (b) (c)

SgHS

 | SI

 | HSI

 | HG

 | SG

 | SF

[0.307153]

[0.259863]

[0.257960]

[0.144169]

[0.020607]

[0.010248]

SgCDEF

 | CDSEF

[0.667192]

[0.332808]

Figure 4.21.: Learned grammars from manually segmented dataset, noted as
the low-noise scenario. Note that only segmentation was done
manually, where symbol detectors are still trained and tested
in the same way as in automatically-segmented dataset.

91

actually captured the original grammar used to generate dance sequences,

although the last one contains some unrelated symbols due to the higher

level of symbol detector errors. They can effectively correct the wrong

symbol patterns that largely differ from the symbol patterns in training

sequences. Still, it is interesting to see that other two grammars partially

capture the important constraints such as “HSI” and “HG” in Figure 4.20(c)

and “EF” and “CD” in Figure 4.21(a).

For the execution of motion primitives, we concatenate learned trajecto-

ries of joints based on parsed symbol sequence and apply a low-pass filter

to avoid discontinuity between symbols. Since all trajectories are learned

from multiple human demonstrations, iCub can show natural human-like

movements, such as subtle movements of torso and head while reaching

an arm forward. A video of a demonstrator example can be found at:

http://www.youtube.com/watch?v=S99ViThK050

4.6. The Effect of Pruning Factors

In this section, we show how the change of pruning thresholds affect the

result. The range of thresholds are from 0.00 to 0.20, with intervals of 0.01.

Figures 4.22 and 4.23 show how the pruning threshold affects the testing

accuracy and grammar induction time. In this experiment, we train from all

training data, i.e. all samples from both low-noise and high-noise conditions,

and test on all testing samples as well. As in the previous experiments, a

trial is regarded as fail even if there was a single error in the parsed symbols.

The result in Figure 4.22 confirms that although overall MDL score de-

creases as the threshold increases, the resulting grammar loses generality

and shows poor performance on testing data. In Figure 4.23, training time

92

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

50

100

150

200

250

300

350

400

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
cc

u
ra

cy

M
D

L

Pruning threshold

MDL

Accuracy

Figure 4.22.: The effect of different pruning parameters. In this experiment,
we trained from all training data, i.e. all samples from both
low-noise and high-noise conditions, and similarly tested on
all testing samples. It can be seen that although overall MDL
score decreases as threshold increases, the resulting grammar
loses generality and shows poor performance on testing data.
As in the previous experiments, a trial is regarded as fail even
if there was a single error in parsed symbols.

0

200

400

600

800

1000

1200

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

T
ra

in
in

g
 T

im
e

 (
S

e
co

n
d

s)

Pruning Threshold

Figure 4.23.: The comparison of training times over different prune parame-
ters. Since rules are more likely to be pruned as the threshold
increases, the overall learning time tends to decrease. It was
tested on a Linux desktop with i7 3.2GHz CPU, 16GB RAM,
Python 3.2.

93

generally decreases as the pruning threshold increases, as more rules are

more likely to be discarded during the induction process.

4.7. Summary

This chapter presents a robot imitation learning framework using proba-

bilistic task grammars. Our method aims to discover reusable common task

components across multiple tasks from input stream. The results in the

two non-trivial real-world experiments (Sections 4.4 and 4.5) show that our

method is capable to learn reusable structures under reasonable amount of

noise, as well as in the synthetic dataset experiment (Section 4.3). 1

In the Dance Imitation experiment (Section 4.5), the robot not only gen-

eralized the task from multiple demonstrations at the symbolic level, but

also at the trajectory level, which makes our framework more complete. We

have also experimentally shown that a lower MDL score generally leads to

higher performance on parsing unforeseen action sequences.

The discovery of important task actions and recursions are critical to the

performance, which is supported by the results reported in Sections 4.4.2

and 4.5.2. For example, the task component LAD in Figure 4.13(a), line 1

(Lift a disk, Move between towers 1 and 2, Drop) provides local constraints

that enforce contextually consistent interpretation by biasing the parser

to parse in the order of L − A − D even when the observed symbols are

partially wrong. This biasing effect can be also interpreted as an affordance

learning, similar to (Lopes and Santos-Victor, 2005), where the recognition

of an observed gesture depends on a context variable. Using the learned

grammar in Figure 4.21(a), when the robot observes CD actions several

1The experiments in this chapter appear in (Lee, Su, Kim, and Demiris, 2013; Lee, Kim,
and Demiris, 2012b).

94

times, it can “expect” to observe the same number of EF actions, which

act as a belief system. Due to this advantage, wrong or uncertain symbols

were often corrected or clarified by the learned grammar, e.g. Figures 4.12a

and 4.12b.

The results reported in Section 4.3 support our idea that handling uncer-

tainty values of input symbols improves the performance. Also, the human-

readable results, e.g. Figures 4.13, 4.20, 4.21, is another benefit point in

human-robot interaction domain.

We have shown in Section 4.6 how the pruning threshold affects the overall

performance. Although we have used a fixed pruning factor for all exper-

iments, it would be an interesting work to find an optimal parameter in a

more systematic way, e.g. cross-validation within training samples. This

will lead to a more compact representation of tasks while keeping the train-

ing time to minimum.

In the Bag of Balls (Section 4.3) and The Towers of Hanoi (Section 4.4)

experiments, we have used 3 and 5 primitive symbols, respectively. While

these were simple enough to show how our method works, Dance experiment

scales up to 9 primitive symbols, which are similar to other real-world set-

tings, e.g. 10 primitive symbols used to model complex employee-customer

transaction activities in a convenience store (Kitani, Yoichi, and Sugimoto,

2008), 10 primitive symbols used to model car-human interaction scenarios

in surveillance videos (Ivanov and Bobick, 2000), and 12 primitive symbols

to model the Black Jack card game (Moore and Essa, 2002). The scalability

of these methods to even more complex datasets that will necessitate even

higher number of symbols remains an open challenge.

In the Towers of Hanoi experiment, we had an assumption where the

robot knows that only a smaller object should be placed over larger object,

95

similar to how humans tell others when they give instructions on solving

this specific puzzle. However, it would be an interesting work to make this

more general, by making a robot to learn this rule well by using symbolic-

level planners, such as STRIPS-like symbolic planners (Fikes and Nilsson,

1972).

The inclusion of domain-dependent, biased structural priors could be also

beneficial in terms of both searching speed and grammar accuracy as certain

models will be effectively rejected even if they retain good MDL scores. This

will be especially useful in the domain of imitation learning which often

shares many reusable components across different tasks.

In the following chapter, the study of automatically learning primitive

action detectors in unsupervised manner will be presented.

96

5. Learning Action Components

from Demonstrations

5.1. Introduction

The design of primitive action detectors are critical to task-level LfD ap-

proaches. So far, we have assumed that these primitive action detectors are

given in prior to the experiment. But what if we have no prior knowledge

about primitive actions that constitute a task? This chapter presents an

unsupervised learning approach of primitive action symbols from human

demonstrations, which self-tunes the number of action detectors required to

represent the given hierarchical task effectively.

5.2. Automatic Discovery of Primitive Action

Detectors

Given an input the unlabeled time-series signal segments, our goal is to

discover a meaningful set of action symbols that can effectively represent a

task. If we define too large number of symbols, the description complexity

will increase, possibly lacking the generality of the task representation as

well as it will capture all the subtle differences of human movements. On the

other hand, if we define too small number of symbols, it will over-generalize

97

Candidate Action

Symbol Discovery

Hierarchical

Activity Grammar

Induction

Task-relevant

Symbol Selection

Balanced Comparison of

Model Complexity & Likelihood

Figure 5.1.: Overview: Candidate symbols are generated using agglomera-
tive hierarchical clustering approach, where too general or spe-
cific symbols are subsequently filtered out by measuring the
model complexity and likelihood.

the task representation and result in the failure of capturing the meaningful

differences of task components. Hence, it is useful to find a balancing point

using the minimum description length of the induced grammar.

In our approach, we first discover a number of candidate “systems” where

each system has a different set of action symbols. Next, we learn the SCFG

representation using the method described in Chapter 4 for every candidate

model, which feedbacks a model description length and likelihood value that

are used to select models. Since the value ranges of prior probability and

likelihood differ in large amount, we realize a balanced (non-dominating)

comparison between these two measurements using Pareto optimality to

assess the qualities of the chosen symbols. This process is shown in Figure

5.1.

Kulic et al.(Kulic, Takano, and Nakamura, 2008) proposed a method to

incrementally add observed actions in a hierarchical tree structure, where

leaf nodes represent specific motions and more generalized nodes are lo-

cated closer to the root. The tree is cut into clusters where each cluster

corresponds to each symbol. Our method is distinguished by how we mea-

sure the validity of the learned activity grammars to choose a better set of

symbols (i.e. the feedback). Liang et al.(Liang, Shih, Shih, Liao, and Lin,

98

2009) trained variable-length Markov models (VLMM) which can automat-

ically learn the model parameters of primitive human actions, where each

VLMM is trained to learn each unlabeled action symbol. In our case, how-

ever, we do not assume how many action symbols are available. Whereas

the codebook and topic models are sequentially obtained for learning action

categories in (Niebles, Wang, and Fei-Fei, 2008; Wong, Kim, and Cipolla,

2007), action symbols and activity grammars are found with the feedback

in this paper.

As we are concerned with learning syntactic-level action symbols, we pre-

process input video sequences into a series of vector representations using

low-level feature descriptors. The choice of a low-level descriptor depends on

the problem domain, e.g. joint-space description for human motion capture

data. Each vector is defined as a group of consecutive frames which share

the similar low-level descriptions within the group. They can be regarded

as unlabeled video segments.

5.2.1. Discovery of Candidate Symbols

We begin our method by clustering segment vectors using hierarchical ag-

glomerative clustering which incrementally builds a binary tree by grouping

a pair of similar vectors based on some distance function, starting from leaf

nodes (single-vector nodes). The height of a node represents a distance

between two child nodes. By grouping nodes with height less than τ , we

obtain κ clusters of vectors. We set initial τκ

τκ = max(χ(i, j)) ∀i, j (5.1)

99

where inconsistency coefficient χ(i, j) measures how objects contained in

child nodes i and j differ from each other:

χ(i, j) =
d(i, j)− µi,j

σi,j
(5.2)

with µi,j and σi,j respectively representing mean and standard deviation of

heights of all subnodes of i and j.

d(i, j) =

√

2ninj
ni + nj

‖x̄i − x̄j‖2 (5.3)

is a distance function defined using Ward’s method to take into account the

cost of merging two clusters. Intuitively, the higher the value of χ(i, j), the

less similar the objects belong to that link, hence inconsistent.

The mean of each cluster is used as a symbol description that can classify

input video segments and label with its symbol index. We represent a

system having κ symbols as ψκ. However, as we do not have prior knowledge

about whether using κ symbols is optimal to represent an activity effectively,

different number of symbols need to be tested: Ψ = {ψ1, ψ2, ..., ψκ}.

An advantage of using hierarchical clustering analysis is that it does not

depend on initial conditions like k-means and provide an intuitive way to

partition data points into a desired number of clusters.

5.2.2. Selecting the Number of Symbols

For each system ψκ ∈ Ψ obtained in the last section, we build an activity

representation from data using acquired symbols. Since training part is

unsupervised, we follow the minimum description length (MDL) principles.

We require that our training method is able to 1) obtain model parameters

in unsupervised way, 2) measure model complexity and likelihood at any

100

stage of training, and 3) deal with recursions.

Minimum Description Length

As described in Chapter 4, we iteratively apply two types of operators,

Substitute and Merge, until the best grammar is found based on MDL prin-

ciple. The objective is to find a representation that is sufficiently simple

yet expressive, based on the findings reported in Chapter 4 where lower

MDL scores generally lead to a better representation. By measuring prior

probability of a model P (M) and data likelihood P (D|M), our goal is to

minimize the MDL score, represented as −log of joint probability P (M,D):

− logP (M,D) = −logP (M)− logP (D|M) (5.4)

P (M) = P (MS ,Mθ) = P (MS)P (Mθ|MS) (5.5)

where P (MS) denotes structure prior and P (Mθ) denotes parameter prior,

computed in the same way as in Chapter 4.

Balanced Comparison of Model Complexity and Likelihood

We now train ψκ ∈ Ψ ∀κ, i.e. train each system having a different number

of symbols. Our goal is to select a system that can describe data well while

having reasonable amount of complexity. However, in practice, a model

with the lowest MDL score does not guarantee to be the best, as we need

exhaustive dataset to compute ideal P (M) and P (D|M). Hence, there is

often discrepancy between the value ranges of −logP (M) and −logP (D|M).

Generally, the model description length−logP (M) changes in much higher

amount than −logP (D|M) if sampled data were obtained from the same

domain, which makes −logP (M) “dominate” MDL score (Kitani, Yoichi,

101

and Sugimoto, 2008). Hence, it is a common practice to adjust both terms

of MDL by multiplying weights to eliminate the biasing problem, but the re-

sult still relies on the weights. However, although we do not know the value

ranges of the two MDL terms, for sure if both −logP (M) and −logP (D|M)

are less than that of another model, it is a better model. This shares the

same underlying objective with Pareto optimality.

From this observation, we present a balanced comparison method. First,

while performing SCFG learning algorithm which searches for the best

model of a system ψ by incrementally changing model parameters, save a

pair of MDL components p = [−logP (M),−logP (D|M)] at each step. We

obtain these values from all systems 1...κ and call this set S = {p1, p2, ...pn}.

Compute S∗:

S∗ = S − Φ(pi, pj) ∀i, j (5.6)

where

Φ(pi, pj) =











pi if pi ≻ pj

φ otherwise
(5.7)

and pi ≻ pj is true only if both components of pi are larger than pj , re-

spectively. We vote on S∗ how many points belong to each model ψκ and

choose N-best models. We have now obtained a candidate of models that

can represent an activity effectively.

The following figure (Figure 5.2) summarizes the whole process.

5.3. Experiments

5.3.1. Experiment Design

We set our objective to be imitation learning where a robot observes human

demonstrator and follow a sequence of actions. Instead of simply imitat-

102

1. Run unsupervised clustering of unlabeled input signals.
2. Compute candidate systems each having a different set of symbols

as described in Section 5.2.1.
3. Apply the grammar learning method described in Section 4.2

on each candidate system and record the MDL scores for every
node while constructing the search tree.

4. Perform balanced comparison of model complexity and likelihood for
each candidate system using the method described in Section 5.2.2

5. Rank systems based on the number of votes received by each system.

Figure 5.2.: Summary of action symbol selection.

ing, it is required that the system should deal with observation error using

the obtained grammars so that it can correctly perform the intended action

sequence. Furthermore, similar to the previous experiments, the task rep-

resentation includes recursion which is demonstrated in various lengths of

action sequences, resulting in a more challenging setting.

The experiments are conducted on two different types of dataset. The

first one is the Towers of Hanoi dataset used in Chapter 4, on which a

visual tracker is applied so that it tracks the current moving block. A single

video segment (input to the system) is represented as a 10 dimensional

histogram vector computed from the block’s quantized positions as well as

frame differences (velocities) dx and dy. The second dataset is a newly

acquired motion capture Dance dataset, which includes 6 action symbols in

a single task grammar. The reason why we had to create an extra dataset is

because although the Dance dataset used in the Chapter 4 has non-trivial

task structures and contains 9 action symbols in total, only up to 4 action

symbols are used in any single task. Similar to (Zhou, Torre, and Hodgins,

2008), 6 most informative joints are selected for learning which makes our

103

segments to be 6 dimensional vectors. 1

5.3.2. Findings

We first analyze the Towers of Hanoi dataset. The optimal solution to

solve the puzzle requires 5 symbols, which respectively represent a disk to

be lifted, placed, and moved between two out of three towers (3 sub-action

symbols in total). Figure 5.3 shows an example tree constructed and symbol

representations with κ = 8.

Figure 5.4 shows the spanning values obtained while inducing a grammar

for each system ψκ. As can be seen, the likelihood does not improve as

the number of symbols increases, because the learned model often fails to

capture the regularity due to excessive number of symbols. The voting

scores in Figure 5.5 suggest that systems ψ3 and ψ5 are selected as the best.

This is reasonable since the Towers of Hanoi puzzle can be also represented

using 3 symbols, in which case they are interpreted as: “Disk lifted“, ”Disk

dropped“, “Disk transferred”. However, this is not sufficient to actually

solve the puzzle, as the symbol “Disk transferred” is ambiguous, i.e. it only

describes any movement between two towers. Its representation is actually

an averaged histogram of 3 different block transfer actions between two

towers, which lacks specificity for execution. This is why systems having

5 symbols failed completely. Our method explicitly takes into account the

problem of defining the right “scale” (scope) of a single action, which is

generally problem-dependent.

To validate, we parse the input data using the obtained grammar of each

system and execute to reproduce actions. During execution, each parsed

symbol is mapped to the closest executable action, i.e. one of the five

1The experiments in this chapter appear in (Lee, Kim, and Demiris, 2012a).

104

0

2

4

6

8

10

12

14

Nodes

H
e
ig

h
t

Figure 5.3.: An example clustering tree created (top), showing only the top
30 nodes for better view, and eight action symbol representa-
tions (bottom) obtained from the Towers of Hanoi dataset.

105

Figure 5.4.: The spanning values of description lengths obtained from the
Towers of Hanoi (top) and Dance (bottom) data. Best cases
(S∗) obtained using the method described in Sec. 5.2.2 are
indicated by square markers. (Best viewed in color.)

106

κ αT βT VT ST αC βC VC SC

1 45.3±7.5 16.3±2.0 2 0.00 34.5±4.1 4.0±1.5 5 0.00

2 142.0±42.4 10.1±1.8 6 0.00 177.4±20.4 3.3±0.9 1 0.00

3 202.5±30.8 4.2±0.6 15 0.00 124.6±10.9 2.9±1.1 10 0.00

4 319.3±43.1 3.0±0.9 8 0.00 173.7±12.0 2.5±1.0 0 0.00

5 356.6±38.2 2.8±0.7 13 0.92 172.4±8.1 2.5±1.0 4 0.00

6 463.0±58.2 2.5±0.6 9 0.50 191.1±10.7 2.2±1.1 8 0.95

7 925.3±133.7 3.3±0.4 0 0.92 259.1±13.5 2.0±0.8 0 0.95

8 947.4±114.6 3.1±0.3 0 0.67 413.2±20.8 2.3±0.5 0 1.00

Figure 5.5.: Results on the Towers of Hanoi (T) and Dance (C) dataset.
α and β denote mean ± standard deviation of −logP (M) and
−logP (D|M), respectively. Votes (V) are computed by the
method described in Section 5.2.2, whereas success rates (S)
are computed by comparing the parsed symbols.

possible movements mentioned above. As the rule of the puzzle enforces

that only a smaller disk shall be placed on top of a bigger disk, there is

always only a single possibility of moving a disk between two towers. This

is a fair assumption as this rule is always given in prior, not something to

be learned. It is marked as success only if the parsed symbols lead to solve

the puzzle. ψ5 showed to be the best considering both success rate and the

number of votes, which coincides with the ideal number of symbols.

The Dance dataset is composed of 6 motion primitives (a-f): Raise right

or left arm (a, b), Raise both arms (c), Lift left or right leg while raising left

or right arm, respectively (d, e), Spin 360◦ (f). The sample movements are

visualized in Figure 5.6. Dance movements are represented as (abc)n(def)n,

where n = {1, 2, 3} in our dataset. The result is shown in Figure 5.4. The

execution is marked as success only if the parsed symbols exactly match the

performed motion primitives.

The sample grammars learned from the Dance dataset are shown in Figure

5.7. As stated above, it was originally demonstrated using 6 symbols. Figure

107

Figure 5.6.: Representative visualized snapshots of the Dance dataset.

SgSEAB

 | CFD

 | SSEAB

 | CEA

[0.399853]

[0.372613]

[0.199826]

[0.027708]

(b) 5 symbols

SgCDD

 | AEBS

 | AEBSS

 | ACBACDSS

[0.416571]

[0.389128]

[0.179596]

[0.014705]

SgSS

 | BCD

 | EGF

 | SSSS

 | EAC

 | SEAFSS

[0.347360]

[0.294369]

[0.263985]

[0.063192]

[0.020580]

[0.010513]

(a) 6 symbols (ideal)

(c) 7 symbols

Figure 5.7.: Example grammars learned from data. (a) A grammar gen-
erated by a system ψ6 having 6 symbols A-F. (b) has 1 less
symbol, where one of the symbols represents two different ac-
tions. (c) has 1 more symbol, where the same action could be
represented with two different symbols. Low-probability rules
(< 3%) exist due to input data noise.

108

5.7(a) shows the learned grammar with the ideal number of symbols, which

are internally represented as A-F. Figure 5.7(b) shows the case where the

system lacks one symbol. As a result, the algorithm needs to reuse one

of the symbols to represent 2 actions which are the most similar to each

other relative to other actions. In contrast, Figure 5.7(c) shows a grammar

represented with 7 symbols, where two symbols could be used to execute

the same action. Due to the noise inherent in captured data, there are some

erroneous rules having less than 3% rule probabilities.

Note that the results in Figure 5.4 are computed without any knowledge

about the success condition, i.e. success rates are used only to verify the

validity of the voting results.

5.4. Summary

In this chapter, unsupervised method of selecting models with the “right”

number of action symbols was presented. A hierarchical agglomerative clus-

tering analysis and Pareto-inspired voting principles were used to tackle the

balancing problem that commonly occurs in MDL score computations. It

takes into account the question of choosing the right scope (or resolution)

of a single action, which is generally problem-dependent.

Our method exploits the outcomes of SCFG learning technique as feed-

back to tune the number of symbols, where both grammar learning and

symbol discovery are done in unsupervised way. The results confirm that

our method is capable to discover and learn the optimal set of action sym-

bols correctly.

The result of the Towers of Hanoi shows an interesting aspect where the

proposed method captured the 2 most reasonable models, ψ5(ideal) and

109

ψ3, with notable distinction compared to others. Similarly, in the Dance

dataset, ψ6(ideal) and ψ3 were chosen, which are also reasonable candidates.

The results were obtained without any prior knowledge about the success

criteria.

110

6. Action Anticipation and

Attention Allocation using Task

Structures

6.1. Introduction

The ability to detect and recognize temporally extended structured activi-

ties in crowded dynamic environments is crucial for humans. By consider-

ing limited computational resources, which is often neglected but critical in

robotics domain, we present a method to actively decide not only “where”,

but also “when” to retrieve information to maximally improve the overall

recognition of task-relevant activities from the scene by exploiting sequen-

tial knowledge to optimize the costly sampling of high-dimensional sensory

input.

We tackle this problem by taking an information-theoretic approach by

integrating the exploitation of the known structures of temporal events in

a given domain. For each time step, the motion uncertainties acquired at

the low level decides the pan, tilt, and zoom parameters of a camera, where

the event uncertainties acquired at the high level decides how much the

system has to assign resources in the current view. Our problem differs

from conventional event detection problems since our input depends on the

111

camera parameter chosen in the last time step.

Exploiting the temporal structure of known tasks to allocate attention can

allow the perception of several simultaneous events even with sensors having

limited field of view. By focusing only on the most discriminative parts of

an event, the event could be recognized without complete observation, as

the context of actions plays an important role on making the system robust

to missing observations. For such systems, the ability to predict a good

attention timing is crucial to achieving high recognition performances.

In our system, the low-level attentional mechanism uses a low-resolution

whole view imagery, similar to retina periphery, to track candidate objects

(e.g. people) that may perform activities of interest. The system proposes

for each candidate area optimal zoom parameters, aiming to reach higher

resolution while minimizing position uncertainty. The functionalities of this

component are part of those attributed to the dorsal pathway of human

visual perception system (Milner, Goodale, and Vingrys, 2006) which has

a major role both in spatial perception and in top-down attention control

(Chica, Bartolomeo, and Lupiáñez, 2013).

On the other hand, the high-level attentional mechanism selects one or

more areas from the proposed candidates that need to be attended in order

to improve the overall recognition rate of the activities in the environment.

Intuitively, it is desirable to attend an area that has higher uncertainty

about activity hypothesis. Information theoretic approaches are often used

to model principled top-down attention mechanisms (Renninger, Coughlan,

Verghese, and Malik, 2005; Friston, Adams, Perrinet, and Breakspear, 2012).

This mechanism contains three layers: The lower layer extracts visual

features from the attended area, the middle layer recognizes short human

actions, and the higher layer integrates previous observations and generates

112

expectations for future observations. According to (Chinellato and Del Po-

bil, 2009; Milner, Goodale, and Vingrys, 2006), the low-level visual areas of

the brain implements the functionalities of this lower layer. It is also thought

that the Action Observation Network (AON) is able to realize the function-

alities of the middle layer (Fogassi, Ferrari, Gesierich, Rozzi, Chersi, and

Rizzolatti, 2005; Friston, Mattout, and Kilner, 2011; Kilner, 2011; Demiris,

2007). The higher layer is modeled as a mixture of SCFG, which provides a

crucial top-down attentional bias based on the internal predictions of the en-

vironment changes. This layer may correspond to a ventral pathway, which

has been recently proposed (Kilner, 2011) to interact with AON and encode

highly abstracted representations of perceived actions.

With this approach, it brings up two interesting policies:

1) Always prefer to watch an area that is most likely to give relevant

information.

2) Watch less on highly predictable areas and prefer to search for a new

area which is likely to decrease uncertainty the most.

In our experiments, the first strategy corresponds to the minimum entropy

attention (MEA) policy, whereas the second strategy corresponds to the

maximum mutual information attention (MMIA) policy.

6.2. Using Task Structure Information for Action

Anticipation

Our goal is to detect task-relevant activities efficiently by optimally allocat-

ing computational resources on potentially multiple regions of interest in a

dynamic environment. The benefits of our approach are: 1) It provides a

principled method of active camera view selection to maximize the infor-

113

mation needed to recognize task-relevant activities under resource-bound

condition, 2) It allows to detect multiple concurrent activities efficiently

by switching among multiple regions of interest, and 3) It allows to detect

task-relevant activities as early as possible.

We use an information-theoretic camera control system similar to (Den-

zler, Zobel, and Niemann, 2003; Sommerlade and Reid, 2008) at the low

level, followed by extracting low-level features from the current view to

classify human actions. The distribution of human action likelihoods are

fed into a high-level task recognition system which is modeled using SCFG.

As SCFG is a generative model, it can provide a prediction of future distri-

butions of possible actions given the observations so far, which we exploit

to control cameras.

As in the previous chapters, the input to the SCFG parser are the likeli-

hood distribution of primitive action detectors sampled at every time step.

Given an observation, the SCFG parser tries to find the best explanation

about observations (input stream) which is consistent with the overall ex-

pected structure while maintaining temporal consistency. We exploit the

result computed during the prediction step in Section 2.3.2 to predict the

likelihood distribution of actions in the next time step.

Let Ek be our stochastic variable that describes multiple kinds of activi-

ties, which can be one of L activity values, E1, E2, . . . , EL of object k. Each

kind of activity El corresponds to a different grammar. An observation okt is

a distribution of feature responses computed by action component detectors.

Please note that an observation is made only after the camera parameter at

is selected, i.e. the source of information depends on the camera parameter

setting. This is particularly important since several activities evolve simul-

taneously over time with different speed, the quality of future predictions

114

that controls the camera parameters, depend on the current decision. For

brevity, we will denote observations ok1,...,t as simply õkt :

Pat(E
k = Ej |õ

k
t) = Pat(E

k = Ej |o
k
1...t). (6.1)

Pat denote that all the observations are acquired after selecting the camera

parameter at. Let ôkt+1 be a random variable that denotes the expected

observation after the prediction step of parsing. The mutual information

between current activity and the observation is:

Iat(E
k; ôkt+1|õ

k
t) = Hat(E

k|õkt)−Hat(E
k|ôkt+1, õ

k
t). (6.2)

This measurement tells us how much an event uncertainty will change if

we make an observation at the next time step, using the expected obser-

vation distribution inferred from the high-level knowledge and the obser-

vations made so far. Hat(E
k|õkt), the entropy of event detectors given the

observation so far, is computed from the likelihood distributions of action

component detectors.

The interesting part for us is Hat(E
k|ôkt+1, õ

k
t), which requires the ex-

pected symbol distribution in the next time step ôkt+1.

Hat(E
k|ôkt+1, õ

k
t) =

∑

ôkt+1

Pat(ô
k
t+1 = ôkt+1|õ

k
t)Hat(E

k|ôkt+1 = ôkt+1, õ
k
t). (6.3)

Pat(ô
k
t+1|õ

k
t) and Pat(E

k|ôkt+1, õ
k
t) can be obtained from the internal states

115

of the parser at the prediction step (Section 2.3.2):















i : Xk → λ.Y µ[α, γ]

Y → µ

⇒ i : Yi → .ν[α′, γ′] (6.4)

α′ =
∑

∀λ,µ

α(i : Xk → λ.Y µ)P (Y → ν), γ′ = P (Y → ν) (6.5)

where ⇒ denotes a transition between parser states when the grammar rule

Y → µ is applied. α is a forward probability that represents the probability

of the parsed terminal symbols until i-th index in the input stream, whereas

γ is the inner probability of substring that starts at input index k and

ends at i. ν denotes the possible continuation of input symbols at the

current parsing step, i.e. expected observation in the next time step, which

is denoted by a ’.’ notation.

Let si be the first symbol of ν in the i-th hypothesis (Equation 6.4) and

α′(si) the forward probability in the i-th hypothesis. Then the observation

probability of the q-th action component at time t+1 is:

P (ôkt+1 = q|õt) =
∑

s∈S

α′(si = q)/σ (6.6)

where σ is the normalizing factor. This is the expected observation in the

next time step given the observations so far.

Now Pat(E
k|ôkt+1, õ

k
t) can be obtained by simulating the parser to have an

input the expected observation ôkt+1 and computing the maximum forward

probability over all the activity hypotheses at the prediction step.

116

Information-Theoretic Attention Policies

At every time step, the system selects which object w to attend. This corre-

sponds to select the camera parameters among the setWt = {a1
∗

t , a
2∗
t , . . . , a

N ∗

t }.

Ew will be updated by advancing the parser with the observation received

at every time step. For all other objects that were not attended, observa-

tion is given as a uniform distribution since there is no new information.

This “dummy” observation can be understood as a “missing” data from the

parser’s point of view. As a result, object k that was not observed maintain

the same activity distribution of the previous time step:

Pai
∗

t
(Ek|ôkt+1, õ

k
t , at = wi) = Pai

∗

t
(Ek|õkt) ∀i 6= k (6.7)

We now discuss about how to select the object to attend exploiting the

high-level activity knowledge, i.e. the temporal change of observations,

encoded in the grammars. A straightforward object selection policy could

be to always select the object with the minimum expected entropy at time

t+ 1:

wMEA
t = argmin

k
Hak

∗

t
(Ek|ôkt+1, õ

k
t). (6.8)

We will name this Minimum Entropy Attention (MEA) policy. This ap-

proach drives the system to always follow an object that is most likely to

have a known activity. Once the current object activity turns out to be

reliable, the system will keep focusing on the current object. However, in

scenarios where there are more than one object performing an activity, the

system will fail to detect the activities of other objects.

From this motivation, we introduce a more active policy that addresses

this problem. Instead of following the minimum entropy object, we try to

117

minimize the overall expected entropy across all existing object in the scene.

We will name this Maximum Mutual Information Attention (MMIA) policy.

Thus, for each object k at time t, we define a score function S as:

S(t, k) =

N
∑

j

Hak
∗

t
(Ej |ôjt+1, õ

j
t). (6.9)

The optimal selection policy after making an observation at time t is thus:

wt = argmin
at

S(t, at). (6.10)

Using Equation 6.7, the difference of S between any two selections k and j

can be reduced to:

S(t, k)− S(t, j) = Iak∗

t
(Ek; ôkt+1|õ

k
t)− Iaj∗t (E

j ; ôjt+1|õ
j
t). (6.11)

Thus, minimizing the overall expected entropy is equivalent to attending

the object w with the maximum mutual information between Ek and ôkt+1:

wMMIA
t = argmin

k
S(t, k) = argmax

k
Iak∗

t
(Ek; ôkt+1|õ

k
t). (6.12)

6.3. Experiments

6.3.1. Experiment Design

In our evaluation, we focus on how our attention allocations are performed

on multiple tracks. We assume that we use electronic Pan-Tilt-Zoom (ePTZ)

cameras which can transmit both the less detailed images of the whole field

of view, as well as more detailed images of a cropped small region. ePTZ

cameras, which are commercially available, have advantages over conven-

118

tional PTZ cameras as they do not need to physically move the camera

position which can cause a delay and increase the complexity while tracking

objects.

6.3.2. Findings

Synthetic Dataset

We first evaluate our method on synthetic dataset, which is designed to pro-

vide an in-depth understanding of how our system behaves under different

attention policies. Consider a scenario where objects change colors in some

sequence. The temporal structure how colors can change is defined using

an SCFG. Our observations are colors of an object in continuous RGB color

space. We have two objects in the scene, and our virtual camera system has

to choose between two windows to achieve activity recognition performance

as close as when watched both.

In this scenario, two objects are involved in two different activities re-

spectively. We define two simple but ambiguous grammars G(R−G−B)∗ and

G(R−G)∗ :

G(R−G−B)∗ :

S → R G B [0.5]
| S S [0.5]

G(R−G)∗ :

S → R G [0.5]
| S S [0.5]

The grammar expression above only shows only the temporal structures

and rule probabilities with non-terminal symbols. Symbol emission proba-

bilities are defined in a way that each symbol can have recursions and some

noise, e.g. (R → R R [0.70] | r [0.29] | SKIP [0.01]), where r is a terminal

symbol and SKIP is defined as a wildcard that can be substituted with

any symbol, as similarly used in (Ivanov and Bobick, 2000; Lee, Kim, and

Demiris, 2012b). It is often effective on dealing with noisy data. For brevity,

119

2 4 6 8 10 12
0

0.5

1
Window 1

2 4 6 8 10 12
0

0.5

1
Window 2

0 2 4 6 8 10 12 14
0

0.5

1

E
n
tr

o
p
y

0 2 4 6 8 10 12 14

−2

x 10
−4

M
u
tu

a
l
In

fo
rm

a
ti
o
n

0 2 4 6 8 10 12 14

E
n
tr

o
p
y

0 2 4 6 8 10 12 14

−2

−1

x 10
−5

M
u
tu

a
l
In

fo
rm

a
ti
o
n

Figure 6.1.: Single vs Random event. Circles and squares denote the at-
tended point when MEA and MMIA were used, respectively.
With MEA, window 1 is favored from t=7, whereas with MMIA
the system loses interest on window 1 and starts exploring win-
dow 2. As a result, window 1 is watched only 4 times, compared
to 10 with MEA, without losing too much information that is
required to recognize the event happened inside.

we will denote G(R−G−B)∗ as G1 and G(R−G)∗ as G2 in this section.

Single vs Random Event

We show in this section how the systems works when there is no relevant

event in the view. The observations in window 2 are generated from uni-

form distribution, where window 1 contains observations that can be only

explained by grammar G1. We compare the results using the two most

meaningful policies, minimum entropy attention (MEA; Equation 6.8) and

maximum mutual information attention (MMIA; Equation 6.12) policies.

In Figure 6.1, the entropy values between two windows do not differ much

due to the grammar ambiguity until a strong blue color signal is observed.

At t=7, the confidence of G1 increases and as a result, both the entropy and

mutual information start dropping. With MEA, window 1 is favored from

t=7, whereas with MMIA the system loses interest on window 1 and starts

exploring window 2, expecting an event in the future. As a result, window

1 is watched only 4 times with MMIA, compared to 10 with MEA, without

120

2 4 6 8 10 12
0

0.5

1
Window 1

2 4 6 8 10 12
0

0.5

1
Window 2

0 2 4 6 8 10 12 14
0

0.5

1

E
n
tr

o
p
y

0 2 4 6 8 10 12 14

−10

0

x 10
−3

M
u
tu

a
l
In

fo
rm

a
ti
o
n

0 2 4 6 8 10 12 14

E
n
tr

o
p
y

0 2 4 6 8 10 12 14

0

x 10
−4

M
u
tu

a
l
In

fo
rm

a
ti
o
n

Figure 6.2.: Two concurrent events. Circles and squares denote the attended
point when MEA and MMIA were used, respectively.

losing much information required to recognize the event.

Concurrent Events

In Figure 6.2, with MEA, the systems gets interested in watching window

1 from t=6, and gets confident from t=7 after observing strong blue signal.

However, although the it does a good job on recognizing the event in window

1, the reappearance of the red signal in window 2 is missed, which can be

explained with G2.

In case of MMIA policy, the system gives more attention in window 2

after t=7 as window 2 did not provide enough information to disambiguate.

It also “expects” to observe window 1 at t=7 because window 2 showed

a strong green signal at t=6 which lowers the uncertainty. The mutual

information drops after confirming a strong blue signal at t=7 in window

1. The system as a result focuses more on window 2 which still needs

disambiguation between two events, expecting more information.

121

VIRAT Dataset

We use a high-resolution video dataset, VIRAT 1 (Oh, Hoogs, Perera, Cun-

toor, Chen, Lee, Mukherjee, Aggarwal, Lee, Davis, et al., 2011), since it

contains multiple long-term structured activities of two types: Collection

and Delivery. It comes with annotation which includes: Load/Unload an

object (2 actions), Open/Close a car trunk (2 actions), Get in/out of a car

(2 actions). In addition to these actions, we denote all standing/wandering

movements between any two actions as “wander” action. Since the anno-

tation is provided only at the action level, we define the temporal range

activities that contain the sequence of these actions.

The Delivery activity is defined as: Get out of a car, Open a trunk, Unload

an object, Close the trunk and Get in to the car, whereas Collection activity

is the same as Delivery except it has load instead of unload. The temporal

lengths of these activities allow enough time for our attention system to

show effect on our visual system over long time period. It is important

to note that an activity may not be carried out by a single person, e.g.

one person unloading while another closing the trunk, with abundance of

occlusions. Since we perform activity recognition based on the individual

level, this situation makes the dataset quite challenging.

To detect actions, we extract spatio-temporal feature descriptors (Alexan-

der Klaser and Schmid, 2008) inside object bounding box using the sug-

gested default values by authors, from which object histogram is computed

using bag of words. To train action detectors, we compute accumulated

histograms with a fixed-length (50 frames) sliding window and train multi-

class linear SVMs using (Chang and Lin, 2011) with probabilistic outputs.

1http://www.viratdata.org. We use “VIRAT S 000001.mp4” to ”VI-
RAT S 000102.mp4” which include 16 activities, 76 actions (excluding wandering),
and 152 human objects.

122

The detected symbols are fed into SCFG parser to focus the attention. We

specify the Collection grammar as:

GCollection :

S → BEFORE LOAD AFTER [0.50]

| BEFORE LOAD [0.25]

| LOAD AFTER [0.25]

BEFORE → GETOUT OPEN [0.50]

| GETOUT [0.25]

| OPEN [0.25]

AFTER → CLOSE GETIN [0.50]

| CLOSE [0.25]

| GETIN [0.25]

Each non-terminal is further defined to allow recursions, e.g. (LOAD

→ LOAD LOAD [0.5] | load [0.4] | SKIP [0.1]), where SKIP symbol is

explained in Sec. 6.3.2. Delivery activity is also similarly defined.

Note that it is possible to train the grammar from the output of detectors

(e.g. (Kitani, Yoichi, and Sugimoto, 2008; Lee, Kim, and Demiris, 2012b)),

but due to the small number of activities available in dataset (16 activity

samples) and huge variance in detector outputs, the grammar we obtained

was not useful to show the differences between the attentional mechanisms

studied in this paper.

We show an example activity and the development of window scores under

MEA and MMIA policies in Figure 6.3. After a person gets out of the

car in window #16, the entropy gets lower and MEA focuses more on it,

while MMIA gives attention to #22 on frame 15004. The person in #22

performs the critical action unload, which is missed by MEA. MMIA then

actively focuses to #20 to see if there is anything informative. We observed

123

14500 15000 15500 16000 16500
0

0.2

0.4

0.6

0.8

1
MEA (Entropy)

15000 15500 16000
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

MMIA (Mutual Information)

16

20

22

16

20

22

Figure 6.3.: Example Delivery task scenario. The blue and red boxes show
window attended using MMIA and MEA, respectively. The
bottom left and right graphs show the expected entropy of win-
dows under MEA policy, and the mutual information of win-
dows under MMIA policy, respectively. (VIRAT-000006, frames
14648-16277)

124

Figure 6.4.: ROC curves obtained under different attention policies and
their respective ROC area values.

125

that under MMIA policy, the system jumps among multiple windows more

frequently when compared to MEA.

At the end of every activity, Viterbi parsing is performed to compute the

activity likelihoods, normalized by the number of observations. We show

ROC curves in Figure 6.4. The reason why MMIA has higher ROC area

score than ALL is due to the high level of noise in the data, it sometimes has

a side effect of ignoring noise. For ALL policy, incorrectly detected symbols

will decrease the overall likelihood since it observes all symbols including

wrong symbols. However, as we cannot predict when the noise will happen,

this noise filtering effect is not guaranteed.

6.4. Summary

An initial step towards dynamic attention control system for efficient long-

term activity recognition has been presented in this chapter. By considering

limited computational resources, our method actively decide not only where,

but also when to retrieve information to maximally improve the recognition

of temporally structured activities by anticipating the discriminative actions

of activities given the limited computational resources.

The structured and abstract representations of activities are crucial for

biasing top-down attention to attend the correct object. This bias is mea-

sured by considering how the external environment will evolve in the next

time step. Our results suggest that taking information-theoretic approach

integrated with SCFG formulations show improvement in exploring areas

that are likely to provide useful information for recognizing activities.

126

7. Conclusions and Future Work

7.1. Conclusions

This thesis investigates the problems involved in making a robot to learn

and imitate structured human tasks by taking syntactic approaches, adapt-

ing the Learning from Demonstrations (LfD) paradigm with emphasis on

the symbolic-level task learning and imitation. Through the use of syntactic

models such as stochastic context-free grammars (SCFG) for task represen-

tation, it is investigated how the knowledge of tasks can be exploited to

recognize human behaviors with the purpose of better imitation. This is

done through exploiting the semantic constraints of a task, which results

in recognizing the human’s intention correctly and imitating the correct ac-

tions. It results in a more efficient and natural interaction between a human

user and a robot by minimizing the need to correct the errors made by the

robot while executing actions.

Experimental findings while using SCFG as a task representation frame-

work throughout multiple real-world and simulated tasks are presented in-

cluding object manipulation games, postural sequence tasks of dance and

surveillance tasks. Issues involved in various action detection methods for

generating symbols with confidence values on different types of input signals

are presented.

127

This thesis introduces a computational model of structured human task

learning that automatically learns task representations from the limited

number of human demonstrations containing errors, aiming to discover and

extract the important aspects of human tasks in the form of SCFG. It is

presented how the learned task representations can be subsequently used

to better recognize more complex tasks that share the same underlying ac-

tion components. It can cope with observation errors as well as human

errors that occur both in training and testing stages by explicitly taking

into account the uncertainties inherent in action detection. It is exper-

imentally shown throughout various experiments that the quality of the

learned task representations under different scenarios coincide with the ex-

pected theoretical results. The effect of the grammar rule pruning factor,

an important factor while learning SCFG, is experimentally shown and the

different results are compared in terms of learning time, model complexity

and accuracy.

Taking a step further, an automatic learning method of primitive action

symbols are developed, assuming that there is no prior information about

what kind of primitive actions are needed to efficiently represent a given

task. The question of automatically learning the optimal set of primitive

action detectors to describe a task efficiently is investigated and the pro-

posed idea is evaluated throughout the experiments.

Finally, this thesis provides an approach to making use of the task struc-

ture information encoded in SCFG with the aim of recognizing task-relevant

activities among multiple behaviors observed from people, which results in

a step towards dynamic attention control system for efficient long-term task

recognition. The structured representations of tasks are exploited to actively

decide not only where, but also when to retrieve information to maximally

128

improve the recognition of task activities.

7.2. Open Questions and Future Work

One interesting research topic is to augment the parser by adding the “state”

information. Currently, the terminals are generated based on events. Hence,

it is not suitable to represent simultaneous actions, e.g. holding an object

while approaching a box. By integrating the notion of state, it is possible

to describe a wider range of actions more effectively. It is also possible to

take advantage of multi-sensory input such as sound or tactile sensing at

the same time. This will enable to easily represent the actions between two

humans.

Currently, a grammar is parsed independently from other grammars, i.e.

a parser does not get affected by the result of another parser. However,

in scenarios where a parser’s current state in the middle of the observation

should affect the state of another parser, it is desirable to have a facility

that adjusts the parser’s state information based on the state information

of other parsers.

Throughout the experiments presented in this thesis, it is assumed that

the start and stop point of a task is known. It is possible to alleviate

by adding external cues such as vocal commands or gestures made by the

demonstrator, although in principle they are essentially equivalent to man-

ual manipulation. This is due to nature of the parser, but it is possible to

continuously observe multiple tasks by making the parser to be reset after

its likelihood reaches a certain level.

On the execution part, after recognizing the task and parsing the primitive

actions, it is possible for a robot to run each action with the same timing

129

as it had learned from the demonstrator by recording the actual timing

between primitive actions. Although execution timing was not critical in

the experiments presented in this thesis, one could easily imagine other

kinds of tasks where it is more important, e.g. playing musical instruments.

While conducting real-world experiments, the parsing speed has not been

negligible when the complexity of the grammar is high and the number of

action symbols are large enough (more than 150). This is due to the stochas-

tic nature of the grammar, which generates excessive number of candidate

states (hypotheses) during parsing. Balancing between the number of states

and accuracy will be a critical component for realizing efficient real-time

recognition.

130

Bibliography

Aggarwal, JK and M.S. Ryoo (2011). “Human activity analysis: A

review”. In: ACM Computing Surveys 43.3, page 16 (cited on page 30).

Ahad, M., JK Tan, HS Kim, and S. Ishikawa (2008). “Human activity

recognition: various paradigms”. In: International Conference on

Control, Automation and Systems. IEEE, pages 1896–1901 (cited on

page 52).

Alexander Klaser, Marcin Marszalek and Cordelia Schmid (2008). “A

Spatio-Temporal Descriptor Based on 3D-Gradients”. In: British

Machine Vision Conference, pages 995–1004 (cited on page 122).

Aloimonos, John, Isaac Weiss, and Amit Bandyopadhyay (1988). “Active

Vision”. In: International Journal of Computer Vision 1.4,

pages 333–356 (cited on page 39).

Aloimonos, Y., G. Guerra-Filho, and A. Ogale (2009). “The language of

action: a new tool for human-centric interfaces”. In: Human Centric

Interfaces for Ambient Intelligence, H. Aghajan, J. Augusto, and R.

Delgado (Eds.) Pages 95–131 (cited on page 32).

Andreopoulos, Alexander and John K Tsotsos (2013). “A Computational

Learning Theory of Active Object Recognition Under Uncertainty”. In:

International Journal of Computer Vision 101.1, pages 95–142 (cited on

page 40).

131

Argall, BD, S Chernova, M Veloso, and B Browning (2009). “A survey of

robot learning from demonstration”. In: Robotics and Autonomous

Systems 57, pages 469–483 (cited on page 28).

Asada, M., M. Ogino, S. Matsuyama, and J. Ooga (2006). “Imitation

learning based on visuo-somatic mapping”. In: Experimental Robotics

IX, pages 269–278 (cited on page 28).

Bajcsy, R. (1988). “Active perception”. In: Proceedings of the IEEE 76.8,

pages 966–1005 (cited on page 39).

Baldwin, DA and JA Baird (2001). “Discerning intentions in dynamic

human action”. In: Trends in cognitive sciences 5.4, pages 171–178

(cited on page 29).

Ballard, D.H. (1991). “Animate Vision”. In: Artificial Intelligence 48,

pages 57–86 (cited on page 39).

Barnachon, Mathieu, Säıda Bouakaz, Boubakeur Boufama, and

Erwan Guillou (2014). “Ongoing human action recognition with motion

capture”. In: Pattern Recognition 47.1, pages 238–247 (cited on

page 86).

Bentivegna, Darrin C, Christopher G Atkeson, and Gordon Cheng (2006).

“Learning similar tasks from observation and practice”. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems,

pages 2677–2683 (cited on page 29).

Billard, A. (2001). “Learning motor skills by imitation: a biologically

inspired robotic model”. In: Cybernetics and Systems 32.1,

pages 155–193 (cited on page 29).

Billard, A., S. Calinon, R Dillmann, and S. Schaal (2008). Robot

Programming by Demonstration (Chapter 59). Springer (cited on

page 28).

132

Billard, Aude, Yann Epars, Sylvain Calinon, Stefan Schaal, and

Gordon Cheng (2004). “Discovering optimal imitation strategies”. In:

Robotics and Autonomous Systems 47.2–3, pages 69 –77 (cited on

page 29).

Borji, A. and L. Itti (2013). “State-of-the-Art in Visual Attention

Modeling”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 35.1, pages 185–207 (cited on page 39).

Bradski, G. (2000). “The Opencv Library”. In: Doctor Dobbs Journal

25.11, pages 120–126 (cited on pages 48, 77).

Breazeal, C. and B. Scassellati (2001). “Challenges in Building Robots

That Imitate People”. In: Imitation in animals and artifacts, page 363

(cited on page 29).

Breazeal, C. and B. Scassellati (2002). “Robots that imitate humans”. In:

Trends in Cognitive Sciences 6.11, pages 481–487 (cited on page 29).

Calinon, S., F. Guenter, and A. Billard (2005). “Goal-directed imitation in

a humanoid robot”. In: IEEE International Conference on Robotics and

Automation, pages 299–304 (cited on page 29).

Cangelosi, A. et al. (2010). “Integration of Action and Language

Knowledge: A Roadmap for Developmental Robotics”. In: IEEE

Transactions on Autonomous Mental Development 2.3, pages 167–195

(cited on page 30).

Cangelosi, Angelo and Domenico Parisi (2002). Simulating the evolution of

language. Springer London (cited on page 30).

Chang, C.C. and C.J. Lin (2011). “LIBSVM: a library for support vector

machines”. In: ACM Transactions on Intelligent Systems and

Technology 2.3, pages 1–27 (cited on pages 88, 122).

133

Chao, Crystal, Maya Cakmak, and Andrea L Thomaz (2011). “Towards

grounding concepts for transfer in goal learning from demonstration”.

In: IEEE International Conference on Development and Learning.

Volume 2, pages 1–6 (cited on page 29).

Chen, D., M. Bilgic, L. Getoor, and D. Jacobs (2011). “Dynamic

Processing Allocation in Video”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 33.11, pages 2174–2187 (cited on

page 41).

Chica, Ana B., Paolo Bartolomeo, and Juan Lupiáñez (2013). “Two

cognitive and neural systems for endogenous and exogenous spatial

attention”. In: Behavioural Brain Research 237.0, pages 107 –123 (cited

on page 112).

Chinellato, Eris and Angel P Del Pobil (2009). “The neuroscience of

vision-based grasping: a functional review for computational modeling

and bio-inspired robotics”. In: Journal of Integrative Neuroscience 8.02,

pages 223–254 (cited on page 113).

Chiu, Chih-Yi, Shih-Pin Chao, Ming-Yang Wu, Shi-Nine Yang, and

Hsin-Chih Lin (Sept. 2004). “Content-based retrieval for human motion

data”. In: Journal of Visual Communication and Image Representation

15.3, pages 446–466 (cited on page 88).

Croon, G. de and E.O. Postma (2007). “Sensory-motor Coordination in

Object Detection”. In: IEEE Symposium on Artificial Life,

pages 147–154 (cited on page 39).

Dautenhahn, K and CL Nehaniv (2002). “The Agent-Based Perspective on

Imitation”. In: Imitation in Animals and Artifacts, pages 1–40 (cited on

page 29).

134

Demiris, J and G Hayes (2002). “Imitation as a Dual-Route Process

Featuring Predictive and Learning Components; A Biologically

Plausible Computational Model”. In: Imitation in animals and artifacts

(Chapter 13), K. Dautenhahn, C. Nehaniv (Eds.) Pages 327–361 (cited

on page 29).

Demiris, Y. (2007). “Prediction of intent in robotics and multi-agent

systems”. In: Cognitive Processing 8.3, pages 151–158 (cited on

page 113).

Demiris, Yiannis and Bassam Khadhouri (2006). “Hierarchical attentive

multiple models for execution and recognition of actions”. In: Robotics

and Autonomous Systems 54.5, pages 361–369 (cited on page 44).

Denzler, J. and C.M. Brown (2002). “Information theoretic sensor data

selection for active object recognition and state estimation”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 24.2,

pages 145–157 (cited on pages 39, 40).

Denzler, J., M. Zobel, and H. Niemann (2003). “Information theoretic

focal length selection for real-time active 3d object tracking”. In: IEEE

International Conference on Computer Vision. IEEE, pages 400–407

(cited on pages 40, 114).

Dillmann, R (2004). “Teaching and learning of robot tasks via observation

of human performance”. In: Robotics and Autonomous Systems 47.2-3,

pages 109–116 (cited on page 28).

Dominey, Peter F (2002). “Conceptual grounding in simulation studies of

language acquisition”. In: Evolution of Communication 4.1, pages 57–85

(cited on page 30).

Dominey, Peter Ford and Jean-David Boucher (2005). “Developmental

stages of perception and language acquisition in a perceptually

135

grounded robot”. In: Cognitive Systems Research 6.3, pages 243–259

(cited on page 30).

Ekvall, Staffan and Danica Kragic (2008). “Robot learning from

demonstration: a task-level planning approach”. In: International

Journal of Advanced Robotic Systems 5.3, pages 223–234 (cited on

page 29).

Erlhagen, W, A Mukovskiy, E Bicho, G Panin, C Kiss, A Knoll,

H van Schie, and H Bekkering (2006). “Goal-directed imitation for

robots: a bio-inspired approach to action understanding and skill

learning”. In: Robotics and Autonomous Systems 54.5, pages 353–360

(cited on page 29).

Fikes, Richard E and Nils J Nilsson (1972). “STRIPS: A new approach to

the application of theorem proving to problem solving”. In: Artificial

intelligence 2.3, pages 189–208 (cited on page 96).

Flanagan, JR and RS Johansson (2003). “Action plans used in action

observation”. In: Nature 424.6950, pages 769–771 (cited on page 44).

Fod, A., M.J. Mataric, and O.C. Jenkins (2002). “Automated derivation of

primitives for movement classification”. In: Autonomous robots 12.1,

pages 39–54 (cited on page 85).

Fogassi, Leonardo, Pier Francesco Ferrari, Benno Gesierich, Stefano Rozzi,

Fabian Chersi, and Giacomo Rizzolatti (2005). “Parietal lobe: from

action organization to intention understanding”. In: Science 308.5722,

pages 662–667 (cited on page 113).

Friston, Karl, Rick Adams, Laurent Perrinet, and Michael Breakspear

(2012). “Perceptions as hypotheses: saccades as experiments”. In:

Frontiers in Psychology 3.151 (cited on page 112).

136

Friston, Karl, Jérémie Mattout, and James Kilner (2011). “Action

understanding and active inference”. In: Biological cybernetics 104.1-2,

pages 137–160 (cited on page 113).

Gould, Stephen, Joakim Arfvidsson, Adrian Kaehler, Benjamin Sapp,

Marius Messner, Gary R Bradski, Paul Baumstarck, Sukwon Chung, and

Andrew Y Ng (2007). “Peripheral-Foveal Vision for Real-time Object

Recognition and Tracking in Video.” In: International Joint Conference

on Artificila Intelligence. Volume 7, pages 2115–2121 (cited on page 39).

Gurbuz, Sabri, Toshihiro Shimizu, and Gordon Cheng (2005). “Real-time

stereo facial feature tracking: mimicking human mouth movement on a

humanoid robot head”. In: IEEE-RAS International Conference on

Humanoid Robots, pages 363–368 (cited on page 29).

Higuera, C. de la (2005). “A bibliographical study of grammatical

inference”. In: Pattern Recognition 38.9, pages 1332–1348 (cited on

pages 32, 58).

Itti, Laurent and Pierre Baldi (2005). “A principled approach to detecting

surprising events in video”. In: IEEE Conference on Computer Vision

and Pattern Recognition. Volume 1. IEEE, pages 631–637 (cited on

page 40).

Itti, Laurent, Christof Koch, and Ernst Niebur (1998). “A Model of

Saliency-Based Visual Attention for Rapid Scene Analysis”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 20.11,

pages 1254–1259 (cited on page 40).

Ivanov, Y. and A. Bobick (2000). “Recognition of visual activities and

interactions by stochastic parsing”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 22, pages 852–872 (cited on pages 31,

34, 36, 62, 70, 76, 95, 119).

137

Jansen, Bart and Tony Belpaeme (2006). “A computational model of

intention reading in imitation”. In: Robotics and Autonomous Systems

54.5, pages 394–402 (cited on page 29).

Kilner, James M (2011). “More than one pathway to action

understanding”. In: Trends in cognitive sciences 15.8, pages 352–357

(cited on page 113).

Kitani, K.M., S. Yoichi, and A. Sugimoto (2008). “Recovering the basic

structure of human activities from noisy video-based symbol strings”.

In: International Journal of Pattern Recognition and Artificial

Intelligence 22.08, pages 1621–1646 (cited on pages 31, 37, 38, 63, 64,

67, 68, 70, 71, 73, 80, 95, 101, 123).

Kulic, D., W. Takano, and Y. Nakamura (2008). “Combining automated

on-line segmentation and incremental clustering for whole body

motions”. In: IEEE International Conference on Robotics and

Automation, pages 2591–2598 (cited on page 98).

Kuniyoshi, Y., M. Inaba, and H. Inoue (1994). “Learning by watching:

Extracting reusable task knowledge from visual observation of human

performance”. In: Transactions on Robotics and Automation 10,

pages 799–822 (cited on page 28).

Langley, P. and S. Stromsten (2000). “Learning context-free grammars

with a simplicity bias”. In: The European Conference on Machine

Learning. Volume 1810, pages 220–228 (cited on pages 62, 69).

Larochelle, Hugo and Geoffrey E Hinton (2010). “Learning to combine

foveal glimpses with a third-order Boltzmann machine”. In: Advances in

neural information processing systems, pages 1243–1251 (cited on

pages 39, 40).

138

Lee, Kyu hwa, Jinhan Lee, Andrea Lockerd Thomaz, and Aaron F Bobick

(2009). “Effective robot task learning by focusing on task-relevant

objects”. In: IEEE/RSJ International Conference on Intelligent Robots

and Systems. St. Louis, USA, pages 2551–2556 (cited on page 29).

Lee, Kyuhwa and Yiannis Demiris (2011). “Towards incremental learning

of task-dependent action sequences using probabilistic parsing”. In:

IEEE International Conference on Development and Learning.

Volume 2. Frankfurt, Germany, pages 1–6 (cited on pages 31, 45).

Lee, Kyuhwa, Tae Kyun Kim, and Yiannis Demiris (2012a). “Learning

Action Symbols for Hierarchical Grammar Induction”. In: The 21st

International Conference on Pattern Recognition. Tsukuba Science City,

Japan, pages 3778–3782 (cited on page 104).

Lee, Kyuhwa, Tae Kyun Kim, and Yiannis Demiris (2012b). “Learning

Reusable Task Components using Hierarchical Activity Grammars with

Uncertainties”. In: IEEE International Conference on Robotics and

Automation. St. Paul, USA, pages 1994–1999 (cited on pages 94, 119,

123).

Lee, Kyuhwa, Yanyu Su, Tae-Kyun Kim, and Yiannis Demiris (2013). “A

syntactic approach to robot imitation learning using probabilistic

activity grammars”. In: Robotics and Autonomous Systems 61.12,

pages 1323–1334 (cited on page 94).

Liang, Y., S. Shih, A. Shih, H. Liao, and C. Lin (2009). “Learning Atomic

Human Actions Using Variable-Length Markov Models”. In:

Transactions on System, Man & Cybernetics, Part B (cited on page 98).

Lockerd, A. and C. Breazeal (2004). “Tutelage and socially guided robot

learning”. In: IEEE/RSJ International Conference on Intelligent Robots

and Systems. Volume 4 (cited on page 29).

139

Lopes, Manuel and José Santos-Victor (2005). “Visual learning by

imitation with motor representations”. In: IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics 35.3,

pages 438–449 (cited on page 94).

Metta, G., P. Fitzpatrick, and L. Natale (2006). “Yarp: Yet another robot

platform”. In: International Journal on Advanced Robotics Systems 3.1,

pages 43–48 (cited on page 148).

Metta, G., G. Sandini, D. Vernon, L. Natale, and F. Nori (2008). “The

iCub humanoid robot: an open platform for research in embodied

cognition”. In: Proceedings of the 8th Workshop on Performance Metrics

for Intelligent Systems. ACM, pages 50–56 (cited on pages 75, 147).

Milner, A David, Melvyn A Goodale, and Algis J Vingrys (2006). The

visual brain in action. Volume 2. Oxford University Press Oxford (cited

on pages 112, 113).

Moore, D. and I. Essa (2002). “Recognizing multitasked activities from

video using stochastic context-free grammar”. In: Proceedings of the

National Conference on Artificial Intelligence. Menlo Park, CA;

Cambridge, MA; London; AAAI Press; MIT Press; 1999, pages 770–776

(cited on pages 31, 95).

Nevill-Manning, C.G. and I.H. Witten (1997). “Identifying hierarchical

structure in sequences: A linear-time algorithm”. In: Journal of

Artificial Intelligence Research 7, pages 67–82 (cited on page 37).

Nevill-Manning, C.G. and I.H. Witten (2002). “On-line and off-line

heuristics for inferring hierarchies of repetitions in sequences”. In:

Proceedings of the IEEE 88.11, pages 1745–1755 (cited on page 63).

Nguyen-tuong, Duy and Jan Peters (2008). “Local gaussian process

regression for real time online model learning and control”. In: Advances

140

in Neural Information Processing Systems, pages 1193–1200 (cited on

page 29).

Nicolescu, M.N. and M.J. Mataric (2003). “Natural methods for robot task

learning: Instructive demonstrations, generalization and practice”. In:

International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 241–248 (cited on page 38).

Niebles, J.C., H. Wang, and L. Fei-Fei (2008). “Unsupervised learning of

human action categories using spatial-temporal words”. In:

International Joint Conference on Artificila Intelligence 79.3,

pages 299–318 (cited on page 99).

Ogale, Abhijit, Alap Karapurkar, and Yiannis Aloimonos (2007).

“View-invariant modeling and recognition of human actions using

grammars”. In: Dynamical Vision, pages 115–126 (cited on page 37).

Ognibene, D. and Y. Demiris (2013). “Towards Active Events

Recognition”. In: International Joint Conference on Artificila

Intelligence (cited on pages 40, 41).

Ognibene, Dimitri, G. Pezzulo, and G. Baldassarre (2010). “How can

bottom-up information shape learning of top-down attention control

skills?” In: International Conference on Development and Learning,

pages 231 –237 (cited on page 39).

Ognibene, Dimitri, Yan Wu, Kyuhwa Lee, and Yiannis Demiris (2013).

“Hierarchies for Embodied Action Perception”. English. In:

Computational and Robotic Models of the Hierarchical Organization of

Behavior. Edited by Gianluca Baldassarre and Marco Mirolli. Springer

Berlin Heidelberg, pages 81–98 (cited on page 44).

Oh, Sangmin, Anthony Hoogs, Amitha Perera, Naresh Cuntoor,

Chia-Chih Chen, Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal,

141

Hyungtae Lee, Larry Davis, et al. (2011). “A large-scale benchmark

dataset for event recognition in surveillance video”. In: IEEE

Conference on Computer Vision and Pattern Recognition. IEEE,

pages 3153–3160 (cited on page 122).

Oliver, Nuria and Eric Horvitz (2005). “Selective perception policies for

guiding sensing and computation in multimodal systems: a comparative

analysis”. In: Computer Vision and Image Understanding 100.1,

pages 198–224 (cited on pages 40, 41).

Ota, I., R. Yamamoto, T. Nishimoto, and S. Sagayama (2008). “On-line

handwritten Kanji string recognition based on grammar description of

character structures”. In: International Conference on Pattern

Recognition, pages 1–5 (cited on page 31).

Paletta, Lucas, Gerald Fritz, and Christin Seifert (2005). “Cascaded

Sequential Attention for Object Recognition with Informative Local

Descriptors and Q-learning of Grouping Strategies”. In: Computer

Vision and Pattern Recognition Workshop. Los Alamitos, CA, USA:

IEEE, page 94 (cited on page 39).

Pardowitz, M., S. Knoop, R. Dillmann, and RD Zollner (2007).

“Incremental learning of tasks from user demonstrations, past

experiences, and vocal comments”. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics 37.2, pages 322–332 (cited

on page 28).

Pastra, K. and Y. Aloimonos (2012). “The minimalist grammar of action”.

In: Philosophical Transactions of the Royal Society B: Biological

Sciences 367.1585, pages 103–117 (cited on page 32).

Pattacini, U., F. Nori, L. Natale, G. Metta, and G. Sandini (2010). “An

experimental evaluation of a novel minimum-jerk cartesian controller for

142

humanoid robots”. In: IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1668–1674 (cited on page 77).

Petit, M. et al. (2013). “The Coordinating Role of Language in Real-Time

Multimodal Learning of Cooperative Tasks”. In: IEEE Transactions on

Autonomous Mental Development 5.1, pages 3–17 (cited on page 30).

Renninger, Laura Walker, James Coughlan, Preeti Verghese, and

Jitendra Malik (2005). “An information maximization model of eye

movements”. In: Advances in neural information processing systems 17,

pages 1121–1128 (cited on page 112).

Rizzolatti, Giacomo and Michael A Arbib (1998). “Language within our

grasp”. In: Trends in neurosciences 21.5, pages 188–194 (cited on

page 31).

Ryoo, M.S. and JK Aggarwal (2007). “Robust human-computer

interaction system guiding a user by providing feedback”. In:

International Joint Conferences on Artificial Intelligence,

pages 2850–2855 (cited on page 31).

Sakakibara, Yasubumi, Michael Brown, Richard Hughey, Saira Mian,

Kimmen Sjölander, Rebecca C Underwood, and David Haussler (1994).

“Recent methods for RNA modeling using stochastic context-free

grammars”. In: Combinatorial Pattern Matching. Springer,

pages 289–306 (cited on page 68).

Schaal, S (1999). “Is imitation learning the route to humanoid robots?” In:

Trends in Cognitive Sciences 3.6, pages 233–242 (cited on page 28).

Shan, Yin, Robert I McKay, Rohan Baxter, Hussein Abbass, Daryl Essam,

and HX Nguyen (2004). “Grammar model-based program evolution”.

In: Congress on Evolutionary Computation. Volume 1. IEEE,

pages 478–485 (cited on page 68).

143

Soh, H., Yanyu Su, and Y. Demiris (2012). “Online spatio-temporal

Gaussian process experts with application to tactile classification”. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 4489–4496 (cited on page 29).

Solan, Z., D. Horn, E. Ruppin, and S. Edelman (2005). “Unsupervised

learning of natural languages”. In: Proceedings of the National Academy

of Sciences 102.33, pages 11629–11634 (cited on page 37).

Sommerlade, Eric and Ian Reid (2008). “Information-theoretic active scene

exploration”. In: IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–7 (cited on pages 39, 40, 114).

Sommerlade, Eric and Ian Reid (2010). “Probabilistic surveillance with

multiple active cameras”. In: IEEE International Conference on

Robotics and Automation. IEEE, pages 440–445 (cited on page 40).

Sridharan, Mohan, Jeremy Wyatt, and Richard Dearden (2010).

“Planning to see: A hierarchical approach to planning visual actions on

a robot using POMDPs”. In: Artificial Intelligence 174.11,

pages 704–725 (cited on page 39).

Stolcke, A. and S. Omohundro (1994). “Inducing probabilistic grammars

by Bayesian model merging”. In: Grammatical Inference and

Applications 862, pages 106–118 (cited on pages 37, 38, 63–68, 70, 71,

78).

Stolcke, Andreas (1995). “An Efficient Probabilistic Context-Free Parsing

Algorithm that Computes Prefix Probabilities”. In: Computational

Linguistics, MIT Press for the Association for Computational

Linguistics. Volume 21 (cited on page 37).

Su, Yanyu, Yan Wu, Kyuhwa Lee, Zhijiang Du, and Yiannis Demiris

(2012). “Robust Grasping for an Under-actuated Anthropomorphic

144

Hand under Object Position Uncertainty”. In: IEEE-RAS International

Conference on Humanoid Robots. Osaka, Japan, pages 719–725 (cited on

page 77).

Suzuki, Mototaka and Dario Floreano (2008). “Enactive Robot Vision”.

In: Adaptive Behavior - Animals, Animats, Software Agents, Robots,

Adaptive Systems 16.2-3, pages 122–128 (cited on page 39).

Thrun, S. and T.M. Mitchell (1995). “Lifelong robot learning”. In: Robotics

and autonomous systems 15.1-2, pages 25–46 (cited on page 29).

Vijayanarasimhan, S., P. Jain, and K. Grauman (2010). “Far-sighted

active learning on a budget for image and video recognition”. In: IEEE

Conference on Computer Vision and Pattern Recognition. IEEE,

pages 3035–3042 (cited on page 39).

Viola, Paul and Michael Jones (2001). “Robust Real-time Object

Detection”. In: International Journal of Computer Vision (cited on

page 48).

Vogel, J. and N. de Freitas (2008). “Target-directed attention: Sequential

decision-making for gaze planning”. In: IEEE International Conference

on Robotics and Automation, pages 2372–2379 (cited on page 39).

Wong, Kwan-Yee Kenneth, Tae-Kyun Kim, and Roberto Cipolla (2007).

“Learning motion categories using both semantic and structural

information”. In: IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–6 (cited on page 99).

Woodward, A.L., J.A. Sommerville, and J.J. Guajardo (2001). “How

infants make sense of intentional action”. In: Intentions and

intentionality: Foundations of social cognition, pages 149–169 (cited on

page 29).

145

Wu, Yan and Yiannis Demiris (2010). “Towards One Shot Learning by

Imitation for Humanoid Robots”. In: IEEE International Conference on

Robotics and Automation, pages 2889–2894 (cited on page 29).

Yu, Xiaodong, Cornelia Fermuller, Ching Lik Teo, Yezhou Yang, and

Yiannis Aloimonos (2011). “Active scene recognition with vision and

language”. In: IEEE International Conference on Computer Vision.

IEEE, pages 810–817 (cited on pages 40, 41).

Zhou, F., F. Torre, and J.K. Hodgins (2008). “Aligned cluster analysis for

temporal segmentation of human motion”. In: IEEE International

Conference on Automatic Face & Gesture Recognition, pages 1–7 (cited

on pages 66, 103).

146

A. Experimental Setup

A.1. Robot Platform

The experiments are conducted using iCub, an open source 53

degrees-of-freedom (DoF) humanoid robot developed under European

Commission’s The Seventh Framework Programme. It is approximately 1

meter in height, has two 7-DoF arms, two 9-DoF hands, two 6-DoF legs, a

3-DoF neck, two 3-DoF eyes and a 3-DoF torso. The hand and shoulder

joints are tendon-driven, where fingers are pulled against springs with

teflon-coated cables running inside teflon-coated tubes. For sensing, it has

two cameras on eyes, two microphones on ears, tactile sensors on fingers,

distributed capacitive sensors on arms as well as position and torque

sensors on major joints (Metta, Sandini, Vernon, Natale, and Nori, 2008).

The cameras used are Dragonfly2 firewire cameras developed by Point

Grey, from which either 320x240 or 640x480 resolution color images can be

retrieved at 30 frames per second. In this thesis, raw images were retrieved

in Bayer pattern format and decoded by the camera client module for

bandwidth efficiency. Depth calculation was also done based on the images

captured from these cameras.

iCub is controlled through either Gigabit Ethernet network or 802.11g/n

wireless network through iKart, its supporting platform. The main

147

software library is YARP (Yet Another Robot Platform), an open source

library (Metta, Fitzpatrick, and Natale, 2006).

Figure A.1.: iCub performing tasks demonstrated by human partners.

A.2. Motion Capture System

An 8-camera OptiTrack motion capture system developed by Natural

Point is used in this thesis for capturing human joint information. It uses

passive infrared light reflectance markers attached on a suit. It generates

as output 54 dimensional angular values from 18 human joints at 100

frames per second. The processing software is ARENA, also developed by

the same company. Using this software, all signals were applied a low-pass

filter, automatic gap-filling, marker-joint association and 3D pose

computation. Autodesk MotionBuilder software was used for visualization.

148

	Introduction
	Motivation
	Thesis Summary
	Contributions
	Roadmap
	List of resulting publications

	Background and Related Work
	Introduction
	Robot Learning from Demonstrations
	Task Representation and Recognition
	Task Representation through SCFG
	Task Recognition through Probabilistic Parsing

	Task Structure Learning
	Task Structure for Attention Control
	Summary

	Syntactic Approaches to Task Representation and Recognition
	Introduction
	Experiments
	Experiment Design
	Findings

	Summary

	Learning Task Structures from Demonstrations
	Introduction
	The Discovery of Task Structures and Parameters
	Active Substring Discovery
	Considering Input Samples with Uncertainty
	Measuring the Quality of a Grammar

	Bag-of-Balls Experiment
	Experiment Design
	Findings

	The Towers of Hanoi Experiment
	Experiment Design
	Findings

	The Dance Imitation Experiment
	Experiment Design
	Findings

	The Effect of Pruning Factors
	Summary

	Learning Action Components from Demonstrations
	Introduction
	Automatic Discovery of Primitive Action Detectors
	Discovery of Candidate Symbols
	Selecting the Number of Symbols

	Experiments
	Experiment Design
	Findings

	Summary

	Action Anticipation and Attention Allocation using Task Structures
	Introduction
	Using Task Structure Information for Action Anticipation
	Experiments
	Experiment Design
	Findings

	Summary

	Conclusions and Future Work
	Conclusions
	Open Questions and Future Work

	Bibliography
	Appendix Experimental Setup
	Robot Platform
	Motion Capture System

