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a b s t r a c t

This paper describes a brain–machine interface for the online control of a powered lower-limb exoskele-
ton based on electroencephalogram (EEG) signals recorded over the user’s sensorimotor cortical areas.
We train a binary decoder that can distinguish two different mental states, which is applied in a cascaded
manner to efficiently control the exoskeleton in three different directions: walk front, turn left and turn
right. This is realized by first classifying the user’s intention to walk front or change the direction. If the
user decides to change the direction, a subsequent classification is performed to decide turn left or right.
The user’s mental command is conditionally executed considering the possibility of obstacle collision.
All five subjects were able to successfully complete the 3-way navigation task using brain signals while
mounted in the exoskeleton. We observed on average 10.2% decrease in overall task completion time
compared to the baseline protocol.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With a potential to offer more dexterous functionalities than
wheelchair, various types of exoskeletons have been actively de-
veloped in recent years [1]. Exoskeletons are wearable robots
exhibiting a close physical interaction with the human user.
Among them, powered upper-limb and lower-limb exoskeletons
have been given attention as the potential technology to assist
paraplegic or tetraplegic population. Throughout the past decade,
brain–machine interface (BMI) systems have been the focus of re-
search on improving the quality of life of people having severemo-
tor disabilities (e.g. [2–4]). As an emerging technology, researchers
have shown the possibility of controlling exoskeletons and neuro-
prosthetic devices using the non-invasive electroencephalography
(EEG) which captures the brain signals from electrodes placed on
a scalp (e.g. [5–9]). EEG is still regarded as the only practical and
realistic non-invasive BMI method at present [10] because other
imagingmodalities such as functionalmagnetic resonance imaging
(fMRI), magnetoencephalography (MEG) and positron emission
tomography (PET) are quite expensive [11], technically demanding
and not easily portable.

A BMI system can be controlled using either endogenous (spon-
taneous) or exogenous (evoked) signals. In exogenous BMI, evoked
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signals appearwhen a person senses external stimuli such as visual
or auditory cues. The advantage of this approach includes minimal
training, high bit rates up to 60 bits/min [12,13]. However, the user
needs to always attend to the stimuli which limits its applicability.
Also, the user can become quickly tired due to the strong stim-
uli. Typical examples include modulations of steady state visually
evoked potential (SSVEP) [14] and P300-based interfaces [15]. In
endogenous BMI, on the other hand, control signals are generated
independently from any external stimulation and can be fully
operated voluntarily by the user. It is also useful for userswho have
sensory impairments while providing a more natural and intuitive
means of interactions since users can spontaneously command the
neuroprosthesis [16]. It typically requires, however, longer training
sessions and the bit rate is usually lower. Examples include slow
cortical potentials (SCP) [17,18] and sensorimotor rhythms such as
motor imagery (MI) [19].

Although tested with healthy subjects as a proof of concept
in this work, we aim our ultimate target group as people with
tetraplegia, where no or limited residualmotor control is available.
Even with the latest advances in non-invasive BMI, there still
remains many challenging problems to achieve this goal outside
of the lab environment. The low signal-to-noise ratio of EEG sig-
nals and its high sensitivity to electrical noise is a major limiting
factor of decoding performance. More importantly, a higher level
of cognitive load is required by the user to operate a BMI when the
user is mounted in amobile platform compared to operating a BMI
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in a stationary environment. Electromyography (EMG) suffers less
from these problems but it requires residual motor control which
makes it not suitable in our case.

We are interested in the online control of a lower-limb ex-
oskeleton using the endogenous brain signals as the user needs to
spontaneously deliver commands based on his/her own intentions
and the context of the surrounding the environment. The online
control of a lower-limb exoskeleton has some extra difficulties
compared to other mobile BMI systems, e.g. wheelchairs, because
of the higher level of fatigue the subjects experiences due to the
vertical standing posture and the physical exercise. In addition,
it involves a relatively higher level of risk in mechanical stability.
Furthermore, the fact that its locomotion is composed of multiple
atomic actions, e.g. foot lift or foot turn, a mechanism to ensure
the synchronization between the user’s decision making and the
robot’s movement is needed. In addition to the difficulties men-
tioned above, the online control of a lower-limb exoskeleton while
mounted in it makes the user harder to focus and easily tired
because of the non-linear body movements involved in walking.
To tackle these problems, we propose a BMI decoding approach
that aims at achieving: (i) high classification accuracy, (ii) short
calibration time, and (iii) low cognitive workload. This approach
is based on the following components:

(1) Multiclass classification using cascaded binary classifiers.
(2) Binary classification based on the detection of motor im-

agery.
(3) The execution of mental commands considering environ-

mental context.

Compared to the multiclass MI-based classification methods
commonly used in endogenous BMI [5,20–22], e.g. left versus right
hand imagery or hand versus feet imagery, our classifier discrim-
inates the imagery of moving both hands versus resting. We ex-
ploit thewell-known event-related desynchronization (ERD) effect
which can be observed in the EEG signal immediately after the user
starts imagining themovement of one ormore body parts [23].We
show that as few as 10 trials ofmotor imagery are sufficient to train
a classifier compared to the typical lengthy training required for
multi-classMI decoders [12]. The binary classification is performed
in a cascaded manner to make the final decision. In a 3-way MI
classification protocol, the robot turns only when the left or right
motor command is delivered and the implicit motor command of
moving front is continuously executed while the user deliberately
avoids sending anymotor command.We show throughour prelim-
inary experiments that our protocol iswell suited for controlling an
exoskeleton online.

To the best of our knowledge, this is the first work on the online
control of walking and turning of the lower-limb exoskeleton for
navigation based only on EEG signals. The only comparable work is
NeuroRex [24] in which the online control was used to detect the
intention of a user to start or stopwalking. Here,we show5healthy
subjects successfully controlling the exoskeleton to complete a
navigation task that requires the decoding of 3 different motor
commands online – walk front, turn left and turn right – in order
to reach a target with high accuracy while avoiding obstacles.

2. Background

2.1. State-of-the-art lower-limb exoskeletons

With the advances in materials, actuators, sensors and com-
puter size, many wearable exoskeletons have become real-life
products. Some examples of lower-limb exoskeletons include
Rex (Rex Bionics) [25], ReWalk (ReWalk Robotics) [26], Ekso

(Ekso Bionics) [27], HAL (Cyberdyne) [28], ALEX (University of
Delaware) [29], X1 (NASA) [30], and Indego (Vanderbilt Univer-
sity) [31]. We use Rex as our testing platformwhich can ultimately
be used on people with severe motor disabilities.

Rex is a self-balancing, battery-powered lower-limb exoskele-
ton that can perform basic functions with a joystick such as walk-
ing front, back and side, turning left and right, sitting down and
standing up. Aimed for paraplegic users, although potentially it
can be also used by people with tetraplegia, it is the only lower-
limb robotic exoskeleton currently available that can move in-
dependently without the support of the user. Compared to Rex,
ReWalk is a lighter exoskeleton which is more suited for people
who can balance and stand themselveswith intact hands, arms and
shoulders. Ekso is an exoskeleton that is also aimed for paraplegia
who can balance his or her upper body and shift weights while
walking. It is equipped with a remote controller so that a physical
therapist can control the device. ALEX is a gait rehabilitation device
which can apply just the right amount of force on the leg to help it
move along the desired path. However, ALEX is limited to be used
on a treadmill. HAL combines a voluntary control system based
on surface electromyography (EMG) with autonomous control to
assist the user in performing various types of actions. It requires
upper body function. Indego is a modular exoskeleton weighing
less than 13 kg which allows users to stand and walk. Nasa’s X1
assists or resists human movement through the use of actuators
positioned at the hips and knees. It was primarily developed as
an assistive exercise technology, which requires an upper body
functionality.

2.2. Brain-machine interfaces for assistive technologies

The Electroencephalography (EEG) is a classical non-invasive
method for measuring a person’s brain signals. The electrodes
placed on the scalp capture the signals that have the amplitude
in the range of microvolts in real time. In the development of
EEG-based BMIs, individually tuned parameters for characterizing
signals are computed from several training trials, which are used to
perform online signal decoding. As the new research in the recent
years has improved the decoding capability of real-time brain
signals, there is an increasing interest in combiningBMI technology
with the existing assistive technologies [3,32].

Many BMI systems have been used to provide control in com-
puter applications. The real-world applications which involve the
interaction with physical devices still needmore thorough investi-
gation. On the one hand, there is a need formore reliable, wearable
EEG recording technologies [33]. On the other hand, there is the
need to develop and test interaction approaches robust enough
for practical applications. Tavella et al. [6] demonstrated the possi-
bility of healthy subjects mentally controlling a non-invasive BMI
neuroprosthesis for the restoration of grasping while perform-
ing multiple tasks in a hand-writing application. Leeb et al. [34]
showed how users can mentally control a telepresence robot with
BMI to perform a navigation task in daily environments. Carlson et
al. [5] and Millán et al. [22] demonstrated the control of an intelli-
gent wheelchair with BMI that can navigate in a room by jointly
utilizing the mental command of the user and the environment
information. Müller-Putz et al. demonstrated a patient controlling
a neuroprosthesis to perform a grasp action [7]. NeuroRex [24]
studies the potential of controlling Rex using brain signals. In their
work, the online control was performed for delivering walk front
vs stop walk actions with a single paraplegic user while the turning
classification was tested in offline analysis.
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Fig. 1. The modified version of Rex exoskeleton (left) and the overview of the brain-controlled exoskeleton framework (right).

3. Methods

In the training phase, the preprocessed EEG signals are trans-
formed into feature representation, which are then used to build
a classifier (Section 3.2). During the testing phase, the likelihoods
computed by the classifier are accumulated over time, represented
as the final decision score (Section 3.2). The real-time visual feed-
back is given to the user through a see-through screen (Google
Glass, Fig. 1) so that the user knows how his/her brain signals are
being decoded and what will be the next action executed by the
robot.

For feature computation, we exploit the ERD explained in Sec-
tion 1 which can be reliably observed in EEG signals when the
subject performs MI. The details can be found in Section 3.2. For
classification, we use Random Forests (RF) classifiers [35] which
are resistant to over-fitting even at low trials-to-features ratio,
robust to outliers, and capable to build a complexmodel for captur-
ing non-linear relationships while running in (near) real-time. RF
classifiers have been recently applied successfully in decoding EEG
signals for both classification [36–38] and data mining purposes
[39] as well as in other fields of science such as data mining [40],
gene analysis [41] and computer vision [42–44].

We use g.Tec USBAmp to sample the signals in 512 Hz from
16 active Ag/AgCl electrodes placed on the scalp according to the
extended 10/20 system [45], which normally takes 10–15 min to
prepare. See Fig. 7 for their physical locations. Our classification
runs in approximately 15 Hz (∼62.5 ms), where the most of the
time is spent on computing power spectral density of EEG signals.
We use a laptop configured with core i7 (2.5 GHz) and 16 GB RAM.
Visual processing, Rex control and ultrasonic sensor processing
modules are implemented in C++withmultithreading,while signal
acquisition, signal processing, machine learning and visualization
modules are implemented in Python with multiprocessing sup-
port. Google Glass visualization app is implemented in Java.

We made some adaptations to the original Rex to perform our
experiments. First, the shoulder component was removed and a
metal plate was added to mount a laptop on the back and two
baskets on each side for holding an amplifier, cables and batter-
ies. Similar to previous developments in neuroprosthetics [5], the

exoskeleton was endowed with sensors that provide information
about the environment. For this purpose, another plate for mount-
ing Kinect v2 camera in the front was added. 4 pairs of ultrasonic
sensors controlled by Arduino Mega [46] have been attached to
the body of Rex. Rex Bionics provided a USB wireless control box
which can be used to control the Rex wirelessly from a computer
implementing the BMI. Fig. 1 shows our modified version of Rex.

3.1. Protocol

While mounted inside Rex, a subject follows the visual cue
shown on the see-throughwearable screen of Google Glass. During
the training stage, 10 trials of each of the following two tasks are
performed for 5 s each, one after the other:

(1) Move: Imagine moving both hands (5 s)
(2) Relax: Imagine relaxing both hands (5 s)

During the Move state, the subjects are instructed not to move
any body part including eyes. During the Relax state, they are told
not to move any body part and focus only on relaxation of the
muscles. Subjects are given a resting period of 10 s between these
trials to freely move their body and rest.

During the online testing stage, the subject can deliver one of
three mental commands to the robot: Walk front, Turn left, and
Turn Right, which is then immediately executed by the robot. The
robot makes one atomic action for each mental command and the
classification is repeated again. However, the robot ignores the
delivered motor command if its execution will cause the robot to
hit a nearby object or wall detected by the on-board sensors (See
Section 3.3).

Our cascaded protocol is defined as following, c.f., Fig. 2.

(1) Cue (1s): Indicate which actions are available.
(2) Imagery (1-5s): Classification of Walk vs Turn is performed

and feedback is provided in the top and bottom bars. The bar
length represents the decoding confidence and the direction
represents a corresponding class. Section 3.2 explains how
the confidence is computed. Decision is made if the bar
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Fig. 2. A cascaded binary classification protocol. This is the visual feedback that a user sees on the see-through screen. TheWalk vs Turn classification is performed during the
first stage. If the red bar reaches either the top or remains in the upper area after timeout (5s), a walk motor command is delivered to the robot. Otherwise, Turn intention
is detected and Left vs Right classification is performed. It has the same behavior as in the first classification step except that the bar moves left or right.

reaches either end of the cell or timeout (5s) occurs. Walk
action is executed as soon as the bar reaches the end of
the upper cell or remains in it. Otherwise, Turn intention is
detected and a second binary classification, Left vs Right, is
performed. During the Left vs Right classification, bar moves
either left or right, where left and right cells correspond to
Left turn and Right turn, respectively.

(3) Command feedback (1s): Indicate the decision.

We compare our protocol with another commonly used 3-way
classification protocol, similar to [5], as a baseline. In this baseline
protocol, the robot makes a left turn if the bar reaches the left end
and right turn if the bar reaches the right end before the timeout
occurs. If the bar is intentionally kept from reaching either side
of the ends until timeout occurs, i.e. intentional non-control, the
robot executes a Walk action after the timeout. In our protocol,
instead of using an intentional non-control to distinguish three
mental commands, we use 2 layers of cascaded binary classifica-
tions to distinguish them.

3.2. BMI decoder

Signal preprocessing. The EEG signals, typically ranging in
an amplitude of microvolts, are captured from active electrodes
and amplified through an EEG amplifier and digitized. We apply
common average reference (CAR) spatial filtering on the raw input
signals to improve the signal-to-noise ratio [47]. For every sample
time, CAR subtracts the mean value of all electrodes, which min-
imizes the uncorrelated random noise with a zero mean through
the averaging process [48].

Feature computation. The conventional ERD analysis mea-
sures the amount of power decrease in the band-passed signals of
a single electrode [23] compared to a short time in the past, i.e. a
baseline. In our work, however, we use signals from all electrodes
and compute the averaged power spectral density (PSD) from each
electrode between 14 and 19 Hz. For both training and testing, a
sliding window of length 0.5 s is used. We use multitaper PSD [49]
implemented in Python MNE library [50]. Multitaper PSD is highly
effective in reducing the estimationbias by averaging overmultiple
independent estimates froma given sample [49]. The averaged PSD
from all electrodes are concatenated to form a feature vector of di-
mension equivalent to the number of electrodes. It is important to
note that although we do not explicitly perform feature selection,
the importance of features are ranked and taken into accountwhile
training the Random Forest classifier based on Gini index scores of
tree nodes. A similar feature selection approach is reported in [39].

Classification. For training, we run the sliding window with a
stepping time of 62.5 ms (16 overlapping windows) in the time
intervals of interest where a PSD is computed from each electrode.
For both classes of Move and Relax, we use the time interval

between 1 and 4 s relative to the onset cue. We ignore the data
up to 1 s because it usually takes some time for a subject to start
the imagery after confirming the cue. A RF classifier with 1000
trees is trained from these features with a depth limit 100. During
the online testing stage, we apply the trained RF classifier after
a feature is computed from the current window. Since a single
window is not reliable due to the highly noisy nature of the EEG
signal, the computed likelihoods Pc(t) of a class c ∈ {Move, Relax}
at current sampling time t are accumulated over time with a
scoring function Sc(t):

Sc(t) = αSc(t − 1) + (1 − α)Pc(t), Sc(0) = 0.5 (1)

where 0 ≤ α < 1 is a damping factor to smooth out the noisy
output of the classifier, which is obtained heuristically [51]. It
is commonly set between 0.8 and 0.9 in practical applications,
depending on the reliability of a single prediction. We set α = 0.8
in our experiments. SMove and SRelax denote the likelihoods of being
in the Move and the Relax states, respectively. Now we define our
decision function D(t):

D(t) = D(t − 1) + β(SMove(t) − SRelax(t)), D(0) = 0. (2)

A decision is made and delivered to the robot if |D(t)| ≥ L or
t ≥ ttimeout , where L is the length of a bar. The speed parameter
β controls the bar speed which is adapted individually to each
user in the training stage as a good BMI user can move the bar
more quickly than an average user. While α is used to reflect the
reliability of the classifier, β is used to control the length of visual
feedback duration that a user feels most comfortable with. We set
ttimeout = 5 s. The final decision is labeled as Move if D(t) > 0,
or Relax otherwise. For example, in Fig. 2, L corresponds to the
length of a gray bar in pixels, and D(t) corresponds to the length of
a growing red bar in pixels which gradually fills the gray bar from
the center.

3.3. Obstacle detection

For safety reasons, we implemented obstacle avoidance based
on the added sensors so that the robot does not crash into any
object. We estimate the likelihoods of obstacles around Rex using
Kinect v2 and 4 pairs of ultrasonic sensors. Each ultrasonic sen-
sor pair (transmitter/receiver) is mounted as in Fig. 1. We apply
median filtering to remove occasional outliers in the ultrasonic
readings. The ultrasonic sensors are mainly used to detect close
obstacles (∼20 cm for each side, ∼60 cm for front) that cannot be
detected by the visual sensor. We use the depth camera of Kinect
v2 to detect obstacles in the surrounding space of the exoskeleton.
This camera has a coverage between 40 cm to 450 cm and has a
resolution of 521× 424 pixels with a field-of-view of 70.6◦

× 60◦.
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Fig. 3. Depth map acquired from Kinect v2 (top-left) and the segmented result (top-right). The bright green color represents the detected ground region. RGB image
(bottom-left) is shown for reference. The occupancy grid (bottom-right) shows the detected obstacles in red color where higher color intensity means higher certainty. The
depth camera can detect obstacles in the region marked by the inverse triangle, while the obstacles on the sides of the robot are detected by the ultrasonic sensors. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Ground detection while the robot is walking. It can be seen that the tilt angle of the camera is high during the exoskeleton’s locomotion which makes the problem
more challenging.

Preprocessing. We obtain the intrinsic camera parameters us-
ing Zhang’s method [52] for reducing the image distortion using
OpenCV library [53]. The depth image is downsampled to 0.4 times
the original size and 2D Gaussian filtered to reduce noise.

Floor and object detection. We first detect the floor area and
mark any other segmented object as obstacle. At the time of writ-
ing, Kinect SDK’s native floor plane estimation does not work well
when the robot is walking. The reason that Kinect SDK function
is not suitable for us is because it keeps recalibrating whenever
there is a tiltmotion onKinect and it takes several seconds to settle.
Due to this reason, we implement the floor detection using the
following method (see Fig. 3).

The rescaled depth image is divided into cells of size 5 × 5
pixels. Starting from several cells at the bottom line, a cell is
marked as ground if it satisfies two conditions: (1) the depth
value continuously increases compared to the cells in the lower
line, (2) the normal of the cell points toward the y-axis. We use
RANSAC for computing the normal similar to [54] but with Least
Trimmed Squares [55] instead of Minimum Description Length as

it was simpler to implement. Within each cell, 10 sets of 3 points
are randomly selected. For each set of 3 points, the normal is
computed by first finding the corresponding 3Dworld coordinates
and then taking the cross product of two vectors formed by these
3 points. Hence, each set of points determines its own plane. To
find which one is the most representative of the whole cell, the
residual squared error is computed on each pixel of the cell and
the lowest h/2 errors are summed together (h is the total number
of pixels in the cell) to obtain the trimmed sum of the error. The
normal of the plane with the lowest trimmed error sum is chosen
and normalized.

If the normalized vector is close to (0, 1, 0)T , the cell passes the
criteria. In practice, however, we allow some error to compensate
the roll movement of the camera due to the robot’s movement.
Some examples of ground detection can be seen in Fig. 4. Once
the ground is detected, the objects are segmented from the down-
scaled depth map by grouping regions that share the similar depth
with smooth continuity. Segments that are too small are ignored.
Since we do not aim to do an object recognition, this segmentation
is sufficient for our purpose.
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Fig. 5. Experiment scenarios. The user starts a trial in the circlemarked as ‘‘S’’ while
facing toward the goal circle ‘‘G’’. A trial is finished when one of the feet of Rex
touches the goal circle which has a diameter of 30 cm. Three obstacle positions are
marked as ‘‘A’’, ‘‘B’’ and ‘‘C’’. In scenario A, obstacles A and C are present. In scenario
B, obstacle B is also added.

Obstacle occupancy grid. We represent a 2D occupancy grid
having 44 x 44 cells, where each cell represents a square of 23.5
cm in real world. We chose this cell size to map with the single
step of Rex. The Kinect is mapped to the center of the grid.

4. Experiments and analysis

4.1. Experiment scenario

In our work, we run both protocols in two different scenarios
having different difficulty levels as shown in Fig. 5. Due to the slow
speed of the Rex (4–8 s per action), we design scenarios such that
each trial lasts between 4 and 8 min which requires 20–30 motor
commands to finish. In the first scenario (scenario A), there are
two obstacles placed on each side but no obstacle in the center. Al-
though it may seem straightforward, it requires around 20 correct
decisions to reach the goal following the optimal path. The second
scenario (scenario B) has an additional obstacle in the centerwhich
requires the user to pass between 3 obstacles placed 1.5 m apart
from each other, where the user decides which path to take. After
running a few practice runs until the user feels comfortable, each
subject performs one trial each for both protocols in two different
scenarios (4 trials in total).

4.2. Evaluation and analysis

We test our protocol followed by the baseline protocol ex-
plained in Section 3.1 with 5 healthy subjects (1 female/4 males,
mean age 29.2±6.2) on ourmodified version of Rex (Fig. 1).Ween-
sured that we have enough resting period between two protocols.
Our classification method is used in both protocols. All subjects
had previous experiences with the standard motor imagery (left
hand vs right handmovement or hand vs feet movement) but none of
them had any experience with our protocol (both hands movement
vs relaxing). The electrode placement is shown in Fig. 7.

Fig. 6 shows the completion times for each subject. It is im-
portant to note that the cascaded protocol has potential overhead
in time because it requires two consecutive classifications (Walk
vs Turn and Left vs Right). Nevertheless, the average completion
time for scenario A was 285 s with the cascaded protocol, which
is almost 1 min difference compared to 341 s with the baseline

Fig. 6. Task completion time in seconds for each subject between two protocols.

Fig. 7. The placement of electrodes on the scalp when seen from the top. We use
g.GAMMAcap having Ag/AgCl wet electrodes.

protocol. This is due to the lower error rate during the classifica-
tion. Once an error is made, e.g. Rex turns right where it had to go
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straight, it needs at least one ormore actions to recover. In scenario
B, which has a longer path than scenario A, the cascaded protocol
again showed lower average completion time than the baseline
protocol (385 and 404 s, respectively).

It should be noted that we do not know the ground truth label
of each decision the user had made as each motor command is
voluntarily chosen by the user. So instead we estimate a BMI
classification error indirectly by counting how many times the
chosen action led the robot to move farther from the goal, i.e.
assuming the user was always delivering the optimal command. It
is, however, not uncommon that the user gets confused on what
motor command needs to be delivered, e.g., because of the loss
of attention or due to the error on path planning. Therefore, the
estimated errors may be interpreted as an upper bound on the
classification error.

In general, as can be observed in Tables 1 and 2, the estimated
error rate is lower in the proposed protocol. Note that the total
number of decisions can vary evenwith the same number of errors,
as it depends on how long it took for the user to steer back to
the optimal path after making an error. For example, the user can
make an error in the beginning and can gradually diverge from
the optimal path until he or she realizes that the robot needs to
get back to the optimal path. It is also worth mentioning that the
time does not entirely depend on the number of errors or decisions
made because the classification time can vary between 1 to 5 s,
depending on the situation. In addition, it takes a shorter time for
Rex to turn (∼4s) than to walk (∼8s).

We report the threemost informative features, i.e. electrode lo-
cations, of each subject in Table 3. Although most of the electrodes
are placed around the center of scalp to minimize the chances of
having artifact contamination (see Fig. 7 for electrode placement),
there is still a possibility of having a performance degrade due to an
artifact. For example, electrode Fz can be easily affected by uncon-
scious eyemovements, whereas central electrode (Cz, C1, C2...) are
much less likely. The results in Table 3 show that central electrodes
(C1, C2, C4) dominate among the selected top features. Electrodes
FC2 and FC4 are always associated with C2 or C4, respectively,
which suggests that they are not caused by a random artifact but
intentionalmodulation of sensorimotor rhythms. It isworth noting
that the subjects were explicitly instructed to not move their eyes
as much as possible during the classification.

In post-experimental interviews, subjects reported that they
had to put more attention on the visual feedback to check the bar
locationwhile executing the baseline protocol. It is because towalk
front, they had to continuously balance the position of the bar to be
centered around in the middle to keep it from reaching the border.
Furthermore, since turning the robot requires sustained focusing to
make the bar reach the end of a cell, users were more likely to get
tired. In the cascaded protocol, however, since the bar just needs
to be kept within a cell (not reaching the end), there seems to be
less burden for the user even though it can potentially take longer
time due to overhead.

Compared to a wheelchair which allows the user to move
continuously, each stepping action of Rex is discrete and atomic
in a sense that an action cannot be stopped or modified until the
current action is finished. This means that a single error can lead
to a large amount of time delay, potentially increasing the user
frustration. Due to this reason, a protocol that provides higher
accuracy even though it has time overhead seems to fit better for
the purpose of realizing brain-controlled lower-limb exoskeletons.

5. Conclusions and future work

We have shown a working protocol for the purpose of navigat-
ingwith a powered lower-limb exoskeleton using only EEG signals.

Table 1
Error estimates for scenario A. The optimal path requires 16 correct steps.

ID Proposed Baseline

Errors Decisions Rate Errors Decisions Rate

s1 2 19 0.11 2 21 0.10
s2 0 16 0.00 3 21 0.14
s3 3 20 0.15 4 21 0.19
s4 0 16 0.00 6 21 0.29
s5 1 18 0.06 3 20 0.15
Total 6 89 0.07 18 104 0.17

Table 2
Error estimates for scenario B. The optimal path requires 20 correct steps.

ID Proposed Baseline

Errors Decisions Rate Errors Decisions Rate

s1 1 22 0.05 4 25 0.16
s2 2 22 0.09 4 25 0.16
s3 3 23 0.13 5 24 0.21
s4 3 25 0.12 5 26 0.19
s5 1 21 0.05 1 22 0.05
Total 10 113 0.09 19 122 0.16

Table 3
Three most informative electrode locations in order for each subject during the
training phase. This ranking was computed using Gini index of tree nodes of the
Random Forest.

s1 s2 s3 s4 s5

C2, C4, FC2 C4, C2, FC4 C1, CP2, C4 C2, FC2, CP1 C4, C1, CP4

It is also endogenous BMI, which can be voluntarily controlled in
full by a user compared to exogenous BMIs which require external
stimuli. We have demonstrated the effectiveness of the cascaded
binary classifiers enabling users to efficiently deliver the three
motor commands by thinking: walk front, turn left and turn right.
This is realized by first detecting a user’s intention to keep walking
front or turn the direction based on a binary classification. Once
the user’s intention of turning is detected, a subsequent binary
classification is performed to turn the robot left or right.

Our contribution is twofold. First, we experimented with a
classification method based on the binary classification of Move
and Relax instead of a more standard motor imagery control, e.g.
Left hand vs Right hand. Second, we presented a BMI framework
based on cascaded binary classifiers for controlling a lower-limb
exoskeleton. We have demonstrated that our approach is well-
suited for controlling exoskeletons by achieving high accuracy as
shown in Tables 1 and 2, while reducing the cognitive burden of a
user.

There are some interesting possible extensions to our current
preliminary work. First, error-related potential [56,57], which is
observed when the user gets frustrated due to the wrong decision,
can be exploited as a verification tool before delivering a motor
command to the robot for more robust classification. Second, in-
stead of a synchronous classification we used in this experiment,
an asynchronous classification which continuously classifies the
user’s intention during the motor execution can be considered.
It is an interesting but challenging problem since several types
of movement artifact should be thoroughly dealt to achieve this
goal. Third, the performance may increase by individually tuning
the frequency range used for feature computation. Last but not
least, testing with a larger number of subjects and experimental
conditions would be helpful to better confirm the effectiveness of
our protocol.
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