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Abstract—We study an incremental process of learning where that if a robot has knowledge about a minimal set of basic
a set of generic basic actions are used to learn higher-levedsk-  actions which are frequently used in human-robot inteoacti

dependent action sequences. A task-dependent action seque is  ayironment, it can boost the performance of learning new
learned by associating the goal given by a human demonstrato t ing th basic bularies”
with the task-independent, general-purpose actions in thaction concepts using these basic “vocabularies:.

repertoire. This process of contextualization is done usig prob- Formally, our problem falls into the domain of “what to imi-
abilistic parsing. We propose stochastic context-free gramars tate”, among five fundamental categories on imitation leayn
as the representational framework due to its robustness togise, suggested by Dautenhahn and Nehaniv [7]. As discussed in
structural flexibility, and easiness on defining task-indegndent [8][9], the question of “what to imitate” primarily deals thi
actions. We demonstrate our implementation on a real-world . . .
scenario using a humanoid robot and report implementation understaang the goal or intention OT the.demonstrator. In
issues we had. our experiment, we represent the actions in terms of goals
instead of action trajectories. This is also partially exbbn
I. INTRODUCTION the experiments of Baldwin and Woodward, which show that
There has been a growing interest in developing autonomdusnans even from a very early age tend to interpret actions
robots which are capable of learning goal-directed actlpns based on goals rather than motion trajectories [10][11].
imitating humans using multi-level representations ofcanst We use the hand as a reference cue that describes the
[1][2][3]. Broadly speaking, there are two main benefits ofbservation. Flanagan and Johansson [12] elegantly demon-
enabling a robot to learn a new behavior by imitation. strated in their experiments, where participants watched a
From an engineering perspective, imitation learning preeries of block-moving tasks, that people tend to map the
vides a means to speed up learning a new behavior withaigual representation of the observed action onto a motor
exhaustive manual programming. This will give people naepresentation of the same action, instead of a purely Visua
familiar with robot programming the ability to teach robéds analysis of the elements independent from actuators. Ih bot
perform tasks. our and Flanagan’s cases, hand is equivalent to the actuator
From a scientific perspective, on the other hand, as tiich forms the basis of the visual representation of object
robotics domain blends engineering with psychology and neu In this paper, we make the following contributions.
roscience, it is recognized as a new tool to investigateitiogn 1) We present a prototypical incremental learning ap-
and biological questions, as discussed by Schaal [4] apbach which contextualizes task-independent generioract
Demiris [5]. Learning algorithms which can be implementesequences into task-dependent action sequences.
on robotic platforms illuminate gaps between theories @adl r  2) We validate our implementation on 94 samples obtained
world, and allows research to focus on filling these gapsyTh&om human participants to investigate possible benefits an
also provide a means to predict the expected result, whilimitations in a real-world environment.
might be an important tool for directing further experimgent
[6].
In the real-world environment, there are still many obstaclA- Approach
yet to be solved for a robot to be successful on imitatiomlear Our goal is to make the system learn actions that are
ing. One of them is dealing with low-level complexities ortask-specific by observing human demonstrations given a set
vision-based robotic systems in real-world environmemths of task-independent general-purpose action set. Our rdetho
as noise and occlusions. It is often preferable to mininoge | is divided into two stages. In the first stage, we train the
level errors to allocate more resource on solving highestle system with a set of basic actions that could be re-used in
problems. As an analogy, suppose that a man is trying to liftultiple domains. The choice of learning technique is upheo t
a cup. Even thoughraspinga handle is only partially visible system designer’s decision, although sequential models su
or not visible at all due to its subtle finger manipulationgs Hidden Markov Models (HMMs) or Conditional Random
we can still assume that he grasped it by observing the chields (CRFs) are often used. [13] We employed HMMs for
being lifted in the air without paying significant amount obur experiment. In the second stage, we define higher-level
attention on fingers. Our motivation comes from the realirat task-independent actions that are composed of rudimentary
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actions learned in the first stage as basic vocabulariesuin o _
. Learn Learn Object Observe
work, we use stochastic context-free grammars to represent | Low-level Action — ™|  Description —% Demonstration

these actions. Figure 1 shows the two stages of our learning " _
process. *
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Fig. 1. Building task-dependent actions by associatinglsg@ath task-
independent actions. Domain-independent low-level actequences are
learned in the first stage to be used as basic vocabularieeefoesenting
higher-level task-independent actions. By observing adrumlemonstration
and parsing the observation, the system classifies thespmmeding actions
and assigns the goal label, e.g. 1, 2, 3 or 4.

Using stochastic context-free grammars (SCFGs) to rep-
resent higher-level actions provides strong benefits on rec
ognizing human activities. For example, Moore et al. [14]
applied SCFG to represent and recognize various actions use
in Blackjack game, which showed good capability to deal withg- 3 iCub,_the humanoid robot used in the expe_rimentsmtmﬁobject-
errors. In [15], Ivanov et al. applied SCFG to recognize cospecific handling sequences by human demonstration.
ducting gestures by extending the original parsing alborit
to consider input symbols with uncertainty (probabilit@lwes
which resulted in robust recognition. In our case, howewer,
bring this approach to the robotic learning domain to carcstr
general models of human behaviors (task-independentagtio,
that can be re-used for various kinds of tasks. The inputeo

To recognize these action sequences, it is a natural re-
quirement that the system should be able to recognize the
meaningful low-level actions such as a) approach or leave
way from the object, b) grasp or release the object, c) move

e object closer to the box. The models to recognize these

SE.FS parSEr Is the Se(f]llj-IGICI(Ii/EI} O.f symbolized low-level actio%tion components are learned in prior. Further detailsiabo
which are the output of HMMs in our case. . these actions can be found in Section IlI-C.
Although providing task-independent actions in prior ntigh

seem heuristic to some extent, we posit these mid-level I1l. | MPLEMENTATION
representations are crucial for efficient interactionsMeen A  oyerall Process

humans and robots instead of learning from the scratch. . . . .
In the following section, we consider a sample scenario to Based on the scenario illustrated in the previous section,

discuss about the possible ways to realize the aforemetion'© |mple_ment our approach as destfnbe(_j n Flgial.rgThe
functionalities. system first learns the demonstrator’s skin color histogram

) by extracting a patch from the detected face and uses it to

B. Test Scenario track the demonstrator’s hand. It subsequently learnsdtoe ¢

In this section, we illustrate a sample real-world scenarfistogram of the object chosen by the demonstrator in thma for
and discuss about possible ways of implementation. Considémilar to that on Figure. Further details about trackers will
a scenario where we want to organize various types of die discussed in Section IlI-B.
jects using a box. Depending on object type, each shouldit subsequently observes the demonstrator performing an
be treated differently: there could be objects that could laetion sequence and generates a series of low-level action
simply dropped into the box whereas some fragile objecdggmbols using learned models. Detailed method regarding
might need to be placed safely inside the box. Also, if theecognizing low-level actions will be discussed in moreadet
object does not fit into the box, it should be placed next Section IlI-C.
to it. The representations of these three handling methodsThe symbols generated in the last step are fed into a
are given to the robot in the form of stochastic context-fre@CFG parser to classify the action that the demonstrator has
grammars (SCFG) but the robot has no prior information abopgrformed, e.gPl ace the object in the box. The
objects. Based on this scenario, we want to teach a robot holject description (learned color histogram) is assodiatih
each object should be handled by demonstrating propemacttbe classified action, e.@?l ace t he bl ue object in
sequences for each object. t he box. This process will be discussed in Section IlI-D.



1) ‘H approaching O’, ‘H leaving away from O’, ‘O
approaching B’, ‘O leaving away from B’: They represent
the relationships between two entities. The system learned
two general types of HMM, 'Approaching’ and 'Moving away
from’ offline using 20 tracked video samples. The input toreac
HMM is the sign change of distance between two entities, i.e.
{-,+,0}. The HMM library of [17] was used.

2) ‘Object visibility’ and ‘Hand visibility’: These two sym
bols represent the observability of objects. Probabdlitee
obtained by computing the Bhattacharyya distance between
Fig. 4. Examples of object segmentation. the histogram of the current object tracking window and its
previously learned histogram. Color bin size of 32 is used
for the experiment. The above function outputs the histogra
distance between 0 and 1, where 0 means two histograms are
identical. Ideally, if an object is placed in a box, its visily
should reach 1.

3) ‘In contact with object’: This detector is a Gaussian
function with parameters learned from 50 samples of diganc
between hand and object center positions while holding an
object.

Fig. 5. Extracted patches and their color histograms. Itogiam images, . .
x-axis represents the color bin and y-axis represents tmguéncy. Finger D. Action Parsing

colors in the patch are compensated for better trackin ence. . .
P P ore From the input stream of terminals generated by low-level

detectors discussed in Section 11I-C, we need to find th@acti

B. Trackers sequence from the action sequence repertoire that bestiexpl
We use hand and object trackers based on the Camsmf:f observation. Stochastic Context-Free Grammars (SCFGs
are well suited for this purpose due to its robustness agains

tracking algorithm implemented in [16]. Hand color his-" q ; gefini i Advant .
tograms are learned from the face patch of the demonstr gis€ and easiness on defining actions. Advantages on using
FG model on imitation learning are as follows:

in the beginning, and used throughout the experiment untl” ~ * o : . .
all action sequences have been performed. Object patches af 'St it can utilize syntactic knowledge instead of relyin

obtained when a user holds an object close to the system whdfgPure statistics to solve a problem as they can be expressed

its distance is measured from depth perception using stetstnd Mid-level representations, e.g. “drop an objecttdde,

camera. The system learns the object color histogram befdgan disambiguate the noisy actions at the low level usiieg t

observing each action parsed result. Once the parsing is finished, the action geamm

The method we used allows the system to learn an objecfme_With the highest probability is selected and used tdaénp_
a natural way from humans with high success rate. It workda€ inPut symbols generated by the low-level detectorstdThi
as expected on most of trials although there were occaiayonzﬂlthoth it shares many properties with H_MM' it inherently
flickering noise on the border area. In our experiments, wroﬁupports more general models, €.g. counting models SUCh_ as
object patches were learned only 4 times out of 100 trig/d 0" Last but not least, because of its compact representation
An example object segmentation can be seen on Figure 4. #ing linguistic constructs, it allows a wide range of users
average the positions of each tracker every 3 frames and §§&ne actions which does not require high level of technical

them as input to the low-level detectors to increase theéerac S ils. o i : . )

stability. An action is defined using terminals, non-terminals and
. rule probabilities. A terminal, conventionally written iower

C. Low-level Action Detectors case, is generated by a low-level detector with an assakciate

Low-level detectors compute the probability of certaiprobability. It can be easily added by defining an additional
types of events being occurred from pixel-level data. Exaravent detector. A non-terminal, conventionally writterujsper
ples include low-level motions such appr oachi ng an case, is an intermediate symbol that can be regarded as a
obj ect and object states such adj ect observabl e. higher-level description. Rule probability, similar t@fisition
As long as they provide the probability or confidence valuggobability in HMM, is applied when the state is expanded.
between 0 and 1, any low-level detectors can be used, e.gA stochastic context-free grammar (SCFG) parser receives
aural or tactile event detectors. The output values coupléd input a sequence of N dimensional vectors where N is the
probability, or certainty, are called terminals. The sysfaeises number of terminals. It then parses them to find the most
7 event detectors in total, as described below. We denotepkbbable rule that best explains the observation and aaitput
for hand, O for object, and B for box. probabilities of each possible action. SCFG is essentially



TABLE |

ACTION GRAMMAR OF DROP On Predictionstep, the parser hypothesizes the prospective
input based on current position in the parse tree. It adds the
BEGIN = DROP [1.0] next possible state from the current position to the list of
DROP —  AOBJ CONTACT ABOX LOBJ OGONE [1.0]] Pending states to be confirmed on theanningstep.
AOBJ AOBJ b 05 These three steps are iterated until the end of input stream
‘:} aobj aobl [E)_;”] or it satisfies the stop condition, e.g. end of demonstration
| SKIP aobj [0.1]| Viterbi path is computed during parsing as a single dexvati
ABOX —  ABOX abox [0.5] path W_ith the mgximum path probability._
| abox [0.4] As discussed in [18], the time complexity of Earley’s parser
| SKIP abox [0.] is O(1*), wherel is the length of symbols. It decreases to
CONTACT = CONTACT contact [0.5]|  O(1?) if a grammar is unambiguous, i.e. the number of distinct
| contact [0.4] Nati ;
| SKIP contact f0.1] derivation trees of a sentence is 1.
LOBJ = LOBJ lobj [0.5] IV. EXPERIMENTS
| lobj _ [0.4]
| SKIP lobj -1 Based on the scenario described in Section 1I-B and the
OGONE = OGONE ogone [0.5]]  implementation described in Section Ill, we conducted our
} e ogone [[%'_Ai]] experiments with 10 participants repeating 10 demonerati
_ ons: OBJ=op oxch o each. In this experiment, we use a humanoid robot, iCub, as
* Naming conventions: OBJ=object, BOX=box, A=approach |dave R ; P ; ; P
HGONE=hand visibility, OGONE=object visibility shown on Figure 3. iCub is a ph|ld-s_|zed humanou_j robot
CONTACT=hand in contact with an object, SKIP=See Secti®DII with 53 degrees of freedom. It is equipped with PointGrey
DragonFly Il cameras for both eyes.

In this experiment, human demonstrators choose any object
from the selection of sponge dolls, a ceramic doll, two
stochastic model that extends context-free grammar sirdla types of fruits and a water bottle, and perform one of three
HMM which extends regular grammars. object handling actions described in Section Ill. Naméigse
As an example, definition of actioPROP used in the actions areNEXTBOX (place the object next to the box),
experiment is shown in Table I. When we see the rule thBLACE (place the object inside the box), ab&OP (drop the
expands “AOBJ”, there are three possibilities that could E¥jectinto the box). The choice of an object and correspundi
interpreted, with probability 0.5, 0.4 and 0.1, respedyivéf ~ action sequence is fully up to the demonstrator’s will. Enisr
one wants to incorporate a top-down knowledge on a specifitso no restriction on the demonstrator’s performing syzeet
action, it can be realized by biasing the rule probabilites movement trajectories as long as they think it is meaningful
The “SKIP” symbol can be thought of as a wildcard which The participant sits on a chair approximately 1.2m distant
can accept any symbol. It gives “tolerence” to noise symbdkom the robot and a table is placed in the middle. The
that are out of context and it is usually set to low probapilit participant is allowed to sit a little bit closer or fartheoin
If the low-level detectors generate too much noise, thealverthe robot if it felt more comfortable. The participant start
parsed result gets lower probability(confidence). experiment by showing an object to the robot and performing
The terminals are given as input in the form of vector, gn action in mind.
which each element is represented with probability. Foheac After the demonstrator has finished performing actions,
position of the input stream, the parser keeps a set of statleg iCub confirms the result by pointing to each object and
which represents all the pending derivations. Since thte stahowing corresponding actions using gestures. The redson i
transition is occurred in non-deterministic way, a largenber shows gestures instead of actually manipulating the object
of pending derivations can be generated. is solely because of grasping strength issues with our iCub
We briefly explain about the parser using some of thwodel.
terminology used in conventional context-free grammarehod Part of the grammar rules that relates to the acihiROP
The parser begins from the start state and iterates oves thie shown on Table/. Non-terminal symbols from AOBJ to
basic stepsscanning, completion, and predictiofor detailed OGONE are added only to handle repetitive symbols and
description, please refer to [15]. erroneous symbols. In our case, the probability of entering
On Scanningstep, a symbol is read from the input an®KIP rule is set to 0.1 based on heuristics.
matched against all pending states, starting from the startAfter learning a series of 3 actions, the demonstrator glace
state. The rules which do not comply with the observation aBeobjects used in the experiment in front of the iCub, which
rejected and the corresponding derivations are prunedtiem then performs to explain what it has learned. Since its Bwer
parse tree. kinematics module is not accurate enough to grab and hold an
On Completionstep, given a set of productions which havebject, it instead performs a grabbing gesture after pugnio
been confirmed on th8canningstep, the parser advances than object and execute the remaining part, such as reledsing i
current positions in the parse tree. hand on the side of the bdXEXTBOX), above the boXdROP),



TABLE Il
SAMPLE PROBABILISTIC SYMBOLS GENERATED BY LOWLEVEL
DETECTORS AND THE PARSED RESULT

time abox Ibox aobj lobj contact ogone hgone
1 0.1174 0.1426 0.6868 0.0532 0.0000 0.1800 0.1p85
2 0.5284 0.0136 0.0336 0.4245 0.0000 0.3826 0.1j26
3 0.4796 0.0216 0.0512 0.4476 0.0000 0.3627 0.2p95
4 0.2098 0.0640 0.6849 0.0413 0.0000 0.3103 0.2p53
5 0.1590 0.0681 0.7359 0.0370 0.0000 0.3186 0.3B366
6 0.1598 0.0654 0.7477 0.0270 0.0001 0.1427 0.5[125
7 0.1208 0.0930 0.7614 0.0248 0.0013 0.2728 0.5B46
8 0.3048 0.0277 0.6464 0.0210 1.0000 0.2159 0.6p22
9 0.3261 0.0254 0.6296 0.0189 1.0000 0.1977 0.6[L196
10 0.2905 0.2511 0.1193 0.3392 0.0000 0.8438 0.2689
11 0.3092 0.2697 0.1366 0.2846 0.0000 0.8446 0.2j708
12 0.4722 0.4753 0.0328 0.0197 0.0000 0.8549 0.2335
(Numbers are rounded on the fourth digit after decimal ppint

Fig. 6. iCub imitating learned sequence of actions. It pobot each object

and performs grabbing gesture accordingly, followed byreppate arm >> Action sequences recognized as DROP.

movements depending on the recognized result. >> Parsed action sequences:
aobj aobj aobj aobj aobj aobj aobj contact abox lobj ogonenego

or on the back of the bolLACE). An example of the iCub

o ; . TABLE Il
explaining to the demonstrator is shown on Figére RESULTS. N:NEXTBOX, D:DROPR, P:PLACE, X:RECOGNITIONFAILURE
V. RESULTS AND ANALYSIS Ob |\ D P | x | sum

A total of 100 sets of experiments were performed, exclud- & N |85 0 12 o2

ing 6 sets that were not usable due to recording problems. Dl s 6 17 |3 | 0a

Typical single action demonstration spans between 2 and 6 p |7 2 6ol s | oa

seconds. In some extreme cases, actions were extremely fast Sum | 100 1 105 | 67 | 10 | 282

(less than 1 second) or slow (more than 20 seconds). In

this experiment, only the performance of recognizing asio CONI;I—SEII(_)EH:/IVATRIX

is evaluated, not object recognition, as the latter belaongs OB

another problem domain. Gt N b (P | X
Table IT shows an example output of low-level detectors N | 0.90 | 0.07 | 0.00 | 0.02

and the parsed result obtained by the stochastic parser. The D | 0.09| 0.81| 0.07 | 0.03

terminal symbols in the last line denotes the most probable P | 0.07 | 0.23 | 0.64 | 0.05

terminal path reached based on the overall observatioteJab
IIT and IV shows the raw scores and confusion matrix,
respectively. ) _ . .
It is worth noting that “aobj” (approach object) symbol halairly easy to recognize the actlon due to its IS|mpIe stmectu
low probability on time steps 2 and 3 (0.0336 and 0.0513Ne PLACE actions were recognized &RCP in more than
respectively) which is supposed to be high as “DROP” actiggp? of the trials. This is mainly due to the error made on
expects to observe only “aobj” symbols until grabbing tht;he posmon of the tracker WIndOW or significantly diffeten
object. However, after the whole action is recognized 49nting conditions, such as reflection.
“DROP”, these ambiguous symbols are parsed correctly adf the demo_nstratlon is dor_1e too slowly, the tracker often
“aobj”. It will enable the learner to perform the exact tigin SUffers from fjitter” effect which increases the error oreth
of actions, e.g. it knows when to stop approaching the Objeeytput. This problem could be aIIewated_b_y ap_plymg Kalman
when to touch the object, and when to approach the pditer on the tracker but we have.not used it in this work. As can
Although timing is not critical in our example, one couldigas P€ S€en on time steps 2 and 3 in Table even when the hand
imagine other kinds of tasks where it is more important, e.§/@S approaching the object, low-level detector occasignal
playing musical instruments. rgcogmzed “a_pproachlng" as low probability and “leavirag
TableIIT shows the actual number of trials and errors madélgh probability.
in this experimentGt denotesGround truthwhile Ob denotes
Observed resultX denotes the case where the algorithm fails
to find the answer due to extremely low probabilities. It ascu It is possible to learn the structure and probabilities of
if there are too many symbols that are inconsistent with fall aules, but it is commonly regarded as intractable, as di&slis
the defined rules. It generally happens more often on lengtimy [19]. However, as Lari and Young discussed in [20],
demonstrations. it is not impossible to estimate the probabilities once the
Table I'V shows the confusion matrix of the overall resultstructure is fixed using aimside-outside algorithmin our
The accuracy of theN\EXTBOX action is high because it isimplementation, these grammar rules were given manually
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